In this work, we experimentally explore the possibility to realize a sensor whose basic building block is a laser cavity that hosts a target crystal for the incident ionizing radiation. Two possible detection mechanisms are considered: a process of coherent scintillation related to the rapid decay via stimulated emission of the excited atomic or molecular levels of the target material and the activation of states that absorb intracavity photons. We use a solid-state laser to study the dynamic response of our prototype sensor and the related intrinsic limitations and demonstrate capability to detect x-ray energy down to 10 GeV.

X-ray detection by direct modulation of losses in a laser cavity

Aresti M.;Quochi F.;Lai A.;
2020-01-01

Abstract

In this work, we experimentally explore the possibility to realize a sensor whose basic building block is a laser cavity that hosts a target crystal for the incident ionizing radiation. Two possible detection mechanisms are considered: a process of coherent scintillation related to the rapid decay via stimulated emission of the excited atomic or molecular levels of the target material and the activation of states that absorb intracavity photons. We use a solid-state laser to study the dynamic response of our prototype sensor and the related intrinsic limitations and demonstrate capability to detect x-ray energy down to 10 GeV.
File in questo prodotto:
File Dimensione Formato  
5.0029002.pdf

accesso aperto

Tipologia: versione editoriale (VoR)
Dimensione 2.25 MB
Formato Adobe PDF
2.25 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/320810
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact