Saporin conjugated to oxytocin (OXY-SAP) destroys neurons expressing oxytocinergic receptors. When injected unilaterally in the substantia nigra of male rats, OXY-SAP causes a dose-dependent decrease up to 55 % in nigral Tyrosine Hydroxylase (TH)-immunoreactivity compared to control mock peptide BLANK-SAP- and PBS-treated rats or the contralateral substantia nigra. TH decrease was parallel to a dopamine content decrease in the ipsilateral striatum compared to BLANK-SAP- or PBS-treated rats or the contralateral striatum. OXY-SAP-treated rats showed a small but significant increase of locomotor activity 28 days after intranigral injection in the Open field test compared to BLANK-SAP- or PBS-treated rats, in line with an inhibitory role of nigral oxytocin on locomotor activity. OXY-SAP-, but not BLANK-SAP- or PBS-treated rats, also showed marked dose-dependent rotational turning ipsilateral to the injected substantia nigra when challenged with D-amphetamine, but not with apomorphine. Under isoflurane anesthesia OXY-SAP-treated rats showed levels of extracellular dopamine in the dialysate from the ipsilateral striatum only half those of BLANK-SAP- or PBS-treated rats or the contralateral striatum. When treated with D-amphetamine, OXY-SAP_60/120 rats showed increased extracellular dopamine levels in the dialysate from the ipsilateral striatum two third/one third only of those found in BLANK-SAP- or PBS-treated rats or the contralateral striatum, respectively. These results show that OXY-SAP destroys nigrostriatal dopaminergic neurons expressing oxytocin receptors leading to a reduced striatal dopamine function.

Oxytocin-conjugated saporin injected into the substantia nigra of male rats alters the activity of the nigrostriatal dopaminergic system: A behavioral and neurochemical study

Sanna Fabrizio;Jessica Bratzu;Laura Angioni;Cristina Cocco;Antonio Argiolas;Maria Rosaria Melis
2021-01-01

Abstract

Saporin conjugated to oxytocin (OXY-SAP) destroys neurons expressing oxytocinergic receptors. When injected unilaterally in the substantia nigra of male rats, OXY-SAP causes a dose-dependent decrease up to 55 % in nigral Tyrosine Hydroxylase (TH)-immunoreactivity compared to control mock peptide BLANK-SAP- and PBS-treated rats or the contralateral substantia nigra. TH decrease was parallel to a dopamine content decrease in the ipsilateral striatum compared to BLANK-SAP- or PBS-treated rats or the contralateral striatum. OXY-SAP-treated rats showed a small but significant increase of locomotor activity 28 days after intranigral injection in the Open field test compared to BLANK-SAP- or PBS-treated rats, in line with an inhibitory role of nigral oxytocin on locomotor activity. OXY-SAP-, but not BLANK-SAP- or PBS-treated rats, also showed marked dose-dependent rotational turning ipsilateral to the injected substantia nigra when challenged with D-amphetamine, but not with apomorphine. Under isoflurane anesthesia OXY-SAP-treated rats showed levels of extracellular dopamine in the dialysate from the ipsilateral striatum only half those of BLANK-SAP- or PBS-treated rats or the contralateral striatum. When treated with D-amphetamine, OXY-SAP_60/120 rats showed increased extracellular dopamine levels in the dialysate from the ipsilateral striatum two third/one third only of those found in BLANK-SAP- or PBS-treated rats or the contralateral striatum, respectively. These results show that OXY-SAP destroys nigrostriatal dopaminergic neurons expressing oxytocin receptors leading to a reduced striatal dopamine function.
2021
Microdialysis; Motor activity; Nigrostriatal dopamine; Oxytocin-saporin; Turning
File in questo prodotto:
File Dimensione Formato  
Brain Res 1773, 147705, 2021.pdf

Solo gestori archivio

Tipologia: versione editoriale
Dimensione 3.4 MB
Formato Adobe PDF
3.4 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/321632
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact