Carbonatites are peculiar magmatic rocks with mantle-related genesis, commonly interpreted as the products of melting of CO2-bearing peridotites, or resulting from the chemical evolution of mantle-derived magmas, either through extreme differentiation or secondary immiscibility. Here we report the first finding of anatectic carbonatites of crustal origin, preserved as calcite-rich polycrystalline inclusions in garnet from low-to-medium pressure migmatites of the Oberpfalz area, SW Bohemian Massif (Central Europe). These inclusions originally trapped a melt of calciocarbonatitic composition with a characteristic enrichment in Ba, Sr and LREE. This interpretation is supported by the results of a detailed microstructural and microchemical investigation, as well as re-melting experiments using a piston cylinder apparatus. Carbonatitic inclusions coexist in the same cluster with crystallized silicate melt inclusions (nanogranites) and COH fluid inclusions, suggesting conditions of primary immiscibility between two melts and a fluid during anatexis. The production of both carbonatitic and granitic melts during the same anatectic event requires a suitable heterogeneous protolith. This may be represented by a sedimentary sequence containing marble lenses of limited extension, similar to the one still visible in the adjacent central Moldanubian Zone. The presence of CO2-rich fluid inclusions suggests furthermore that high CO2 activity during anatexis may be required to stabilize a carbonate-rich melt in a silica-dominated system. This natural occurrence displays a remarkable similarity with experiments on carbonate–silicate melt immiscibility, where CO2 saturation is a condition commonly imposed. In conclusion, this study shows how the investigation of partial melting through melt inclusion studies may unveil unexpected processes whose evidence, while preserved in stiff minerals such as garnet, is completely obliterated in the rest of the rock due to metamorphic re-equilibration. Our results thus provide invaluable new insights into the processes which shape the geochemical evolution of our planet, such as the redistribution of carbon and strategic metals during orogenesis.

Carbonatitic and granitic melts produced under conditions of primary immiscibility during anatexis in the lower crust

Ferrero S.
;
2016-01-01

Abstract

Carbonatites are peculiar magmatic rocks with mantle-related genesis, commonly interpreted as the products of melting of CO2-bearing peridotites, or resulting from the chemical evolution of mantle-derived magmas, either through extreme differentiation or secondary immiscibility. Here we report the first finding of anatectic carbonatites of crustal origin, preserved as calcite-rich polycrystalline inclusions in garnet from low-to-medium pressure migmatites of the Oberpfalz area, SW Bohemian Massif (Central Europe). These inclusions originally trapped a melt of calciocarbonatitic composition with a characteristic enrichment in Ba, Sr and LREE. This interpretation is supported by the results of a detailed microstructural and microchemical investigation, as well as re-melting experiments using a piston cylinder apparatus. Carbonatitic inclusions coexist in the same cluster with crystallized silicate melt inclusions (nanogranites) and COH fluid inclusions, suggesting conditions of primary immiscibility between two melts and a fluid during anatexis. The production of both carbonatitic and granitic melts during the same anatectic event requires a suitable heterogeneous protolith. This may be represented by a sedimentary sequence containing marble lenses of limited extension, similar to the one still visible in the adjacent central Moldanubian Zone. The presence of CO2-rich fluid inclusions suggests furthermore that high CO2 activity during anatexis may be required to stabilize a carbonate-rich melt in a silica-dominated system. This natural occurrence displays a remarkable similarity with experiments on carbonate–silicate melt immiscibility, where CO2 saturation is a condition commonly imposed. In conclusion, this study shows how the investigation of partial melting through melt inclusion studies may unveil unexpected processes whose evidence, while preserved in stiff minerals such as garnet, is completely obliterated in the rest of the rock due to metamorphic re-equilibration. Our results thus provide invaluable new insights into the processes which shape the geochemical evolution of our planet, such as the redistribution of carbon and strategic metals during orogenesis.
2016
Carbonatites; Garnet; Melt inclusions; Nanocarbonatites; Nanogranites; Partial melting
File in questo prodotto:
File Dimensione Formato  
Ferrero et al., 2016b_nanocarb.pdf

Solo gestori archivio

Descrizione: articolo principale
Tipologia: versione editoriale
Dimensione 3.09 MB
Formato Adobe PDF
3.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/323138
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 48
  • ???jsp.display-item.citation.isi??? 42
social impact