Inclusions in minerals, whether fluids, melts or crystalline phases, are small pieces of the largescale puzzle of Nature, time-consuming to investigate and often of difficult interpretation. Yet they are windows into the past of their host mineral. Mineral inclusions provide the opportunity to unravel the genesis of their host, and the increasingly refined understanding of their elastic behaviour provides the basis for alternative, equilibrium-independent geobarometry. Fluid and melt inclusions reveal information about material transfer in the Earth system, from shallow mineralization to mantle re-fertilization via subduction. The study of inclusions is thus one of the most intriguing and fertile branches of micropetrology. In this contribution, we focus on two recent developments: the use of elasticity models to extract the formation conditions of the host crystal, and the discovery and investigation of melt inclusions in metamorphic rocks. We also discuss how to evaluate the information provided by inclusions, given that they are no longer at the pressure and temperature conditions of entrapment. We discuss how to understand and quantify the changes undergone during cooling and depressurization, and how metastability-related phenomena in inclusions, such as crystallization of rare polymorphs and preservation of the original content of volatiles in fluid and melt inclusions, provide direct evidence that inclusions represent closed systems. The field of study of inclusions in minerals still has a largely untapped potential. The most fruitful avenues for future research will emerge from continuous technological innovation in analytical and imaging techniques, the application of experimental petrology, and the development and application of new theoretical models for coupled mineral behaviour under changing P-T conditions.

Micropetrology: Are inclusions grains of truth?

Ferrero S.
;
2018-01-01

Abstract

Inclusions in minerals, whether fluids, melts or crystalline phases, are small pieces of the largescale puzzle of Nature, time-consuming to investigate and often of difficult interpretation. Yet they are windows into the past of their host mineral. Mineral inclusions provide the opportunity to unravel the genesis of their host, and the increasingly refined understanding of their elastic behaviour provides the basis for alternative, equilibrium-independent geobarometry. Fluid and melt inclusions reveal information about material transfer in the Earth system, from shallow mineralization to mantle re-fertilization via subduction. The study of inclusions is thus one of the most intriguing and fertile branches of micropetrology. In this contribution, we focus on two recent developments: the use of elasticity models to extract the formation conditions of the host crystal, and the discovery and investigation of melt inclusions in metamorphic rocks. We also discuss how to evaluate the information provided by inclusions, given that they are no longer at the pressure and temperature conditions of entrapment. We discuss how to understand and quantify the changes undergone during cooling and depressurization, and how metastability-related phenomena in inclusions, such as crystallization of rare polymorphs and preservation of the original content of volatiles in fluid and melt inclusions, provide direct evidence that inclusions represent closed systems. The field of study of inclusions in minerals still has a largely untapped potential. The most fruitful avenues for future research will emerge from continuous technological innovation in analytical and imaging techniques, the application of experimental petrology, and the development and application of new theoretical models for coupled mineral behaviour under changing P-T conditions.
2018
Elastic geobarometry; Inclusions; Nanogranitoids; Polymorphs
File in questo prodotto:
File Dimensione Formato  
Ferrero & Angel 2018-min.pdf

Solo gestori archivio

Tipologia: versione editoriale
Dimensione 1.21 MB
Formato Adobe PDF
1.21 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/323142
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 54
  • ???jsp.display-item.citation.isi??? 53
social impact