A novel mathematical model to simulate mesenchymal stem cells differentiation into specialized cells is proposed. The model is based upon material balances for extracellular matrix compounds, growth factors and nutrients coupled with a mass-structured population balance describing cell growth, proliferation and differentiation. The proposed model is written in a general form and it may be used to simulate a generic cell differentiation pathway occurring in vivo or during in vitro cultivation when specific growth factors are used. Literature experimental data concerning the differentiation of mesenchymal stem cells into chondrocytes in terms of total DNA and glycosaminoglycan content are successfully compared with model results, thus demonstrating the validity of the proposed model as well as its predictive capability. A further test of the model capability is performed for the case of in vivo fracture healing during which mesenchymal stem cells differentiate into chondrocytes and osteoblasts. Considerations about the extension of the proposed model to different pathologies beside fracture healing are reported. Finally, sensitivity analysis of model parameters is also performed in order to clarify what mechanisms most strongly influence differentiation and the distribution of cell types. © 2007 Elsevier B.V. All rights reserved.

A novel simulation model for stem cells differentiation

Concas A.;Cao G.
2007-01-01

Abstract

A novel mathematical model to simulate mesenchymal stem cells differentiation into specialized cells is proposed. The model is based upon material balances for extracellular matrix compounds, growth factors and nutrients coupled with a mass-structured population balance describing cell growth, proliferation and differentiation. The proposed model is written in a general form and it may be used to simulate a generic cell differentiation pathway occurring in vivo or during in vitro cultivation when specific growth factors are used. Literature experimental data concerning the differentiation of mesenchymal stem cells into chondrocytes in terms of total DNA and glycosaminoglycan content are successfully compared with model results, thus demonstrating the validity of the proposed model as well as its predictive capability. A further test of the model capability is performed for the case of in vivo fracture healing during which mesenchymal stem cells differentiate into chondrocytes and osteoblasts. Considerations about the extension of the proposed model to different pathologies beside fracture healing are reported. Finally, sensitivity analysis of model parameters is also performed in order to clarify what mechanisms most strongly influence differentiation and the distribution of cell types. © 2007 Elsevier B.V. All rights reserved.
2007
Extracellular matrix
Growth factor
Population balance
Simulation model
Stem cell differentiation
Bone Marrow Cells
Cells, Cultured
Chondrocytes
Culture Media
DNA
Extracellular Matrix
Fracture Healing
Glycosaminoglycans
Humans
Intercellular Signaling Peptides and Proteins
Mesenchymal Stem Cells
Models, Biological
Osteoblasts
Reproducibility of Results
Sensitivity and Specificity
Cell Differentiation
Computer Simulation
Models, Theoretical
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/323693
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 23
social impact