The aim of this paper is to present a Nyström-type method for the numerical approximation of the solution of Volterra integral equations of the second kind having highly oscillatory kernels. The method is based on a mixed quadrature scheme which combines the classical product rule with a dilation quadrature formula. The convergence and the stability of the method are investigated and the accuracy of the presented approach is assessed by some numerical tests. The proposed procedure is also applied to the computation of initial scattering data related to the initial value problem associated to the Korteweg-de Vries equation.
Volterra integral equations with highly oscillatory kernels: A new numerical method with applications
Fermo L.
;van der Mee C.
2021-01-01
Abstract
The aim of this paper is to present a Nyström-type method for the numerical approximation of the solution of Volterra integral equations of the second kind having highly oscillatory kernels. The method is based on a mixed quadrature scheme which combines the classical product rule with a dilation quadrature formula. The convergence and the stability of the method are investigated and the accuracy of the presented approach is assessed by some numerical tests. The proposed procedure is also applied to the computation of initial scattering data related to the initial value problem associated to the Korteweg-de Vries equation.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.