In this article, multi-dimensional global optimization problems are considered, where the objective function is supposed to be Lipschitz continuous, multiextremal and without a known analytic expression (black-box). Non-Univalent approximation of Peano curve to reduce the problem to a univariate one satisfying the Hölder condition is employed. Geometric frameworks for construction of global optimization algorithms are discussed. Numerical experiments executed on 100 test functions taken from the literature show a promising performance of the algorithms.
Non-Univalent Approximation of Peano Curve for Global Optimization
Daniela Lera
Primo
;
In corso di stampa
Abstract
In this article, multi-dimensional global optimization problems are considered, where the objective function is supposed to be Lipschitz continuous, multiextremal and without a known analytic expression (black-box). Non-Univalent approximation of Peano curve to reduce the problem to a univariate one satisfying the Hölder condition is employed. Geometric frameworks for construction of global optimization algorithms are discussed. Numerical experiments executed on 100 test functions taken from the literature show a promising performance of the algorithms.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.