Multifunctional molecular materials have attracted material scientists for several years as they are promising materials for the future generation of electronic devices. Careful selection of their molecular building blocks allows for the combination and/or even interplay of different physical properties in the same crystal lattice. Incorporation of redox activity in these networks is one of the most appealing and recent synthetic strategies used to enhance magnetic and/or conducting and/or optical properties. Quinone derivatives are excellent redox-active linkers, widely used for various applications such as electrode materials, flow batteries, pseudo-capacitors, etc. Quinones undergo a reversible two-electron redox reaction to form hydroquinone dianions via intermediate semiquinone radical formation. Moreover, the possibility to functionalize the six-membered ring of the quinone by various substituents/functional groups make them excellent molecular building blocks for the construction of multifunctional tunable metal-organic frameworks (MOFs). An overview of the recent advances on benzoquinone-based MOFs, with a particular focus on key examples where magnetic and/or conducting properties are tuned/switched, even simultaneously, by playing with redox activity, is herein envisioned.

Redox activity as a powerful strategy to tune magnetic and/or conducting properties in benzoquinone-based metal-organic frameworks

Monni N.
Primo
;
Oggianu M.;Mercuri M. L.
2021-01-01

Abstract

Multifunctional molecular materials have attracted material scientists for several years as they are promising materials for the future generation of electronic devices. Careful selection of their molecular building blocks allows for the combination and/or even interplay of different physical properties in the same crystal lattice. Incorporation of redox activity in these networks is one of the most appealing and recent synthetic strategies used to enhance magnetic and/or conducting and/or optical properties. Quinone derivatives are excellent redox-active linkers, widely used for various applications such as electrode materials, flow batteries, pseudo-capacitors, etc. Quinones undergo a reversible two-electron redox reaction to form hydroquinone dianions via intermediate semiquinone radical formation. Moreover, the possibility to functionalize the six-membered ring of the quinone by various substituents/functional groups make them excellent molecular building blocks for the construction of multifunctional tunable metal-organic frameworks (MOFs). An overview of the recent advances on benzoquinone-based MOFs, with a particular focus on key examples where magnetic and/or conducting properties are tuned/switched, even simultaneously, by playing with redox activity, is herein envisioned.
2021
Benzoquinones; Conductivity; Magnetism; Metal-organic frameworks; Redox; Semiquinones
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/328299
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 15
social impact