Three novel bis-urea fluorescent low-molecular-weight gelators (LMWGs) based on the tetraethyl diphenylmethane spacer—namely, L1, L2, and L3, bearing indole, dansyl, and quinoline units as fluorogenic fragments, respectively, are able to form gel in different solvents. L2 and L3 gel in apolar solvents such as chlorobenzene and nitrobenzene. Gelator L1 is able to gel in the polar solvent mixture DMSO/H2O (H2O 15% v/v). This allowed the study of gel formation in the presence of anions as a third component. An interesting anion-dependent gel formation was observed with fluoride and benzoate inhibiting the gelation process and H2PO4−, thus causing a delay of 24 h in the gel formation. The interaction of L1 with the anions in solution was clarified by1H-NMR titrations and the differences in the cooperativity of the two types of NH H-bond donor groups (one indole NH and two urea NHs) on L1 when binding BzO− or H2PO4− were taken into account to explain the inhibition of the gelation in the presence of BzO−. DFT calculations corroborate this hypothesis and, more importantly, demonstrate considering a trimeric model of the L1 gel that BzO− favours its disruption into monomers inhibiting the gel formation.
Anion-Responsive Fluorescent Supramolecular Gels
Picci G.Primo
;Caltagirone C.
Ultimo
;Lippolis V.;
2022-01-01
Abstract
Three novel bis-urea fluorescent low-molecular-weight gelators (LMWGs) based on the tetraethyl diphenylmethane spacer—namely, L1, L2, and L3, bearing indole, dansyl, and quinoline units as fluorogenic fragments, respectively, are able to form gel in different solvents. L2 and L3 gel in apolar solvents such as chlorobenzene and nitrobenzene. Gelator L1 is able to gel in the polar solvent mixture DMSO/H2O (H2O 15% v/v). This allowed the study of gel formation in the presence of anions as a third component. An interesting anion-dependent gel formation was observed with fluoride and benzoate inhibiting the gelation process and H2PO4−, thus causing a delay of 24 h in the gel formation. The interaction of L1 with the anions in solution was clarified by1H-NMR titrations and the differences in the cooperativity of the two types of NH H-bond donor groups (one indole NH and two urea NHs) on L1 when binding BzO− or H2PO4− were taken into account to explain the inhibition of the gelation in the presence of BzO−. DFT calculations corroborate this hypothesis and, more importantly, demonstrate considering a trimeric model of the L1 gel that BzO− favours its disruption into monomers inhibiting the gel formation.File | Dimensione | Formato | |
---|---|---|---|
molecules-27-01257-v2.pdf
accesso aperto
Tipologia:
versione editoriale (VoR)
Dimensione
2.98 MB
Formato
Adobe PDF
|
2.98 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.