In this work, the influence of the use of alternative inexpensive silica sources on the structural, morphological and textural properties of MCM-41 like mesoporous materials to be used for biomedical applications has been investigated. The Liquid Crystal Template Method has been used to prepare the ordered mesoporous structured materials according to a novel composition starting from fumed silica or granular silica gel as alternative silica sources. The obtained materials have been characterized by X-ray Powder Diffraction, Transmission and Scanning Electron Microscopy, and nitrogen sorption, which showed for both samples the formation of the ordered hexagonal pore arrangement typical of a MCM-41 material. However, when using fumed silica, higher long-range hexagonal pore ordering as well as higher surface area have been obtained (1030 vs. 763 m²/g). For comparison, the features of a commercial silica mesostructured MCM-41 type have been investigated as well. Again, the silica fumed based sample has showed higher long-range hexagonal pore ordering, higher surface area and wall thickness. Preliminary stability studies on the fumed silica based material showed a decrease in the pore ordering at the end of the third year after the synthesis.

Alternative Silica Sources in the Synthesis of Ordered Mesoporous Silica

Scano, Alessandra
Membro del Collaboration Group
;
Ebau, Federico
Membro del Collaboration Group
;
Cabras, Valentina
Membro del Collaboration Group
;
Sini, Franca
Membro del Collaboration Group
;
Ennas, Guido
Membro del Collaboration Group
2021-01-01

Abstract

In this work, the influence of the use of alternative inexpensive silica sources on the structural, morphological and textural properties of MCM-41 like mesoporous materials to be used for biomedical applications has been investigated. The Liquid Crystal Template Method has been used to prepare the ordered mesoporous structured materials according to a novel composition starting from fumed silica or granular silica gel as alternative silica sources. The obtained materials have been characterized by X-ray Powder Diffraction, Transmission and Scanning Electron Microscopy, and nitrogen sorption, which showed for both samples the formation of the ordered hexagonal pore arrangement typical of a MCM-41 material. However, when using fumed silica, higher long-range hexagonal pore ordering as well as higher surface area have been obtained (1030 vs. 763 m²/g). For comparison, the features of a commercial silica mesostructured MCM-41 type have been investigated as well. Again, the silica fumed based sample has showed higher long-range hexagonal pore ordering, higher surface area and wall thickness. Preliminary stability studies on the fumed silica based material showed a decrease in the pore ordering at the end of the third year after the synthesis.
2021
Silica Mesoporous Materials; MCM-41; Symmetrical Hexagonal Pore Structure Silica Source Influence.
File in questo prodotto:
File Dimensione Formato  
21JNN-19059-Ennas_revised_Alternative Silica Source.pdf

Solo gestori archivio

Tipologia: versione post-print
Dimensione 1.2 MB
Formato Adobe PDF
1.2 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/330746
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact