Fibrillary aggregated α-synuclein (α-syn) deposition in Lewy bodies (LB) characterizes Parkinson's disease (PD) and is believed to trigger dopaminergic synaptic failure and a retrograde terminal-to-cell body neuronal degeneration. We described that the neuronal phosphoprotein synapsin III (Syn III) cooperates with α-syn to regulate dopamine (DA) release and can be found in the insoluble α-syn fibrils composing LB. Moreover, we showed that α-syn aggregates deposition, and the associated onset of synaptic deficits and neuronal degeneration occurring following adeno-associated viral vectors-mediated overexpression of human α-syn in the nigrostriatal system are hindered in Syn III knock out mice. This supports that Syn III facilitates α-syn aggregation. Here, in an interventional experimental design, we found that by inducing the gene silencing of Syn III in human α-syn transgenic mice at PD-like stage with advanced α-syn aggregation and overt striatal synaptic failure, we could lower α-syn aggregates and striatal fibers loss. In parallel, we observed recovery from synaptic vesicles clumping, DA release failure, and motor functions impairment. This supports that Syn III consolidates α-syn aggregates, while its downregulation enables their reduction and redeems the PD-like phenotype. Strategies targeting Syn III could thus constitute a therapeutic option for PD.
Synapsin III gene silencing redeems alpha-synuclein transgenic mice from Parkinson's disease-like phenotype
Bassareo V.;Frau R.;
2022-01-01
Abstract
Fibrillary aggregated α-synuclein (α-syn) deposition in Lewy bodies (LB) characterizes Parkinson's disease (PD) and is believed to trigger dopaminergic synaptic failure and a retrograde terminal-to-cell body neuronal degeneration. We described that the neuronal phosphoprotein synapsin III (Syn III) cooperates with α-syn to regulate dopamine (DA) release and can be found in the insoluble α-syn fibrils composing LB. Moreover, we showed that α-syn aggregates deposition, and the associated onset of synaptic deficits and neuronal degeneration occurring following adeno-associated viral vectors-mediated overexpression of human α-syn in the nigrostriatal system are hindered in Syn III knock out mice. This supports that Syn III facilitates α-syn aggregation. Here, in an interventional experimental design, we found that by inducing the gene silencing of Syn III in human α-syn transgenic mice at PD-like stage with advanced α-syn aggregation and overt striatal synaptic failure, we could lower α-syn aggregates and striatal fibers loss. In parallel, we observed recovery from synaptic vesicles clumping, DA release failure, and motor functions impairment. This supports that Syn III consolidates α-syn aggregates, while its downregulation enables their reduction and redeems the PD-like phenotype. Strategies targeting Syn III could thus constitute a therapeutic option for PD.File | Dimensione | Formato | |
---|---|---|---|
FAUSTINI ET AL, MOLECUL THER 2022.pdf
Open Access dal 01/05/2023
Tipologia:
versione post-print (AAM)
Dimensione
5.06 MB
Formato
Adobe PDF
|
5.06 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.