Adversarial attacks on machine learning-based classifiers, along with defense mechanisms, have been widely studied in the context of single-label classification problems. In this paper, we shift the attention to multi-label classification, where the availability of domain knowledge on the relationships among the considered classes may offer a natural way to spot incoherent predictions, i.e., predictions associated to adversarial examples lying outside of the training data distribution. We explore this intuition in a framework in which first-order logic knowledge is converted into constraints and injected into a semi-supervised learning problem. Within this setting, the constrained classifier learns to fulfill the domain knowledge over the marginal distribution, and can naturally reject samples with incoherent predictions. Even though our method does not exploit any knowledge of attacks during training, our experimental analysis surprisingly unveils that domain-knowledge constraints can help detect adversarial examples effectively, especially if such constraints are not known to the attacker. We show how to implement an adaptive attack exploiting knowledge of the constraints and, in a specifically-designed setting, we provide experimental comparisons with popular state-of-the-art attacks. We believe that our approach may provide a significant step towards designing more robust multi-label classifiers.
Domain Knowledge Alleviates Adversarial Attacks in Multi-Label Classifiers
Sotgiu A.;Demontis A.;Biggio B.;Roli F.
2022-01-01
Abstract
Adversarial attacks on machine learning-based classifiers, along with defense mechanisms, have been widely studied in the context of single-label classification problems. In this paper, we shift the attention to multi-label classification, where the availability of domain knowledge on the relationships among the considered classes may offer a natural way to spot incoherent predictions, i.e., predictions associated to adversarial examples lying outside of the training data distribution. We explore this intuition in a framework in which first-order logic knowledge is converted into constraints and injected into a semi-supervised learning problem. Within this setting, the constrained classifier learns to fulfill the domain knowledge over the marginal distribution, and can naturally reject samples with incoherent predictions. Even though our method does not exploit any knowledge of attacks during training, our experimental analysis surprisingly unveils that domain-knowledge constraints can help detect adversarial examples effectively, especially if such constraints are not known to the attacker. We show how to implement an adaptive attack exploiting knowledge of the constraints and, in a specifically-designed setting, we provide experimental comparisons with popular state-of-the-art attacks. We believe that our approach may provide a significant step towards designing more robust multi-label classifiers.File | Dimensione | Formato | |
---|---|---|---|
biggio21-tpami.pdf
Solo gestori archivio
Descrizione: articolo completo
Tipologia:
versione post-print (AAM)
Dimensione
5.53 MB
Formato
Adobe PDF
|
5.53 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.