A case report suspicious for a Sudden Infant Death Syndrome is here described. Pathological findings were consistent with an acute respiratory failure while toxicological analysis revealed an elevated blood methadone concentration. Death was then ascribed to an acute methadone intoxication. In addition to the routinary approach, the urinary sample collected at autopsy was investigated with a 1H NMR metabolomic approach and the identified metabolomic profile was challenged with the urinary metabolomic profiles previously obtained from 10 newborns who experienced perinatal asphyxia and 16 healthy control newborns. Intriguingly, the urinary profile of the methadone intoxicated infant was very similar to those belonging to the perinatal asphyxia newborns, especially to those belonging to the newborns characterised by the worst outcome. The results offer several hints on a shared metabolic derangement between different mechanisms of asphyxia/hypoxia. To the best of the authors’ knowledge, this is the first report of the use of a metabolomic approach in a pathological case, in which metabolomics offers useful additional information regarding the mechanism and the cause of death.

Infant urinary metabolomic profile in a fatal acute methadone intoxication

Chighine A.
Primo
Conceptualization
;
Porcu M.
Secondo
Formal Analysis
;
Ferino G.
Formal Analysis
;
Lenigno N.
Investigation
;
d'Aloja E.
Penultimo
Conceptualization
;
Locci E.
Ultimo
Conceptualization
2022-01-01

Abstract

A case report suspicious for a Sudden Infant Death Syndrome is here described. Pathological findings were consistent with an acute respiratory failure while toxicological analysis revealed an elevated blood methadone concentration. Death was then ascribed to an acute methadone intoxication. In addition to the routinary approach, the urinary sample collected at autopsy was investigated with a 1H NMR metabolomic approach and the identified metabolomic profile was challenged with the urinary metabolomic profiles previously obtained from 10 newborns who experienced perinatal asphyxia and 16 healthy control newborns. Intriguingly, the urinary profile of the methadone intoxicated infant was very similar to those belonging to the perinatal asphyxia newborns, especially to those belonging to the newborns characterised by the worst outcome. The results offer several hints on a shared metabolic derangement between different mechanisms of asphyxia/hypoxia. To the best of the authors’ knowledge, this is the first report of the use of a metabolomic approach in a pathological case, in which metabolomics offers useful additional information regarding the mechanism and the cause of death.
2022
Urine; 1H NMR; Asphyxial deaths; Forensics; Metabolomics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/331791
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact