Mechanochemistry is a versatile methodology that can be employed both for covalent bond formation in organic synthesis as well as a mediator to allow preparation novel colloidal dispersions for drug delivery. Herein, ball-milling was employed for the solid-state preparation of fluorescent hydrophobic hydantoins, followed by the unprecedented mechanochemically-mediated complexation of hydrophobic hydantoins within hydrophilic protein β-lactoglobulin (BLG) and BLG nanofibrils (BLGNFs). These hydantoin:protein materials were in turn incorporated into hydrogels. The effect of incorporation of hydantoins into proteins, as well as the effect of protein structure, on the release properties were then investigated. The conversion of BLG to BLGNFs led to a more sustained release demonstrating that heat treatment of BLG into BLGNFs could be employed to modify release properties. To the best of our knowledge, this is the first example where protein : hydantoin complexes were prepared by mechanochemical methodology and mechanochemistry was combined with self-assembly in order to prepare protein nanomaterials for drug-delivery applications. In addition, the use of the developed protein materials is not limited to delivery of drugs but can for example be employed as components of smart food (delivery of nutrients) or release systems of pesticides.
Mechanochemical Preparation of Protein : hydantoin Hybrids and Their Release Properties
Porcheddu A.;Colacino E.;
2022-01-01
Abstract
Mechanochemistry is a versatile methodology that can be employed both for covalent bond formation in organic synthesis as well as a mediator to allow preparation novel colloidal dispersions for drug delivery. Herein, ball-milling was employed for the solid-state preparation of fluorescent hydrophobic hydantoins, followed by the unprecedented mechanochemically-mediated complexation of hydrophobic hydantoins within hydrophilic protein β-lactoglobulin (BLG) and BLG nanofibrils (BLGNFs). These hydantoin:protein materials were in turn incorporated into hydrogels. The effect of incorporation of hydantoins into proteins, as well as the effect of protein structure, on the release properties were then investigated. The conversion of BLG to BLGNFs led to a more sustained release demonstrating that heat treatment of BLG into BLGNFs could be employed to modify release properties. To the best of our knowledge, this is the first example where protein : hydantoin complexes were prepared by mechanochemical methodology and mechanochemistry was combined with self-assembly in order to prepare protein nanomaterials for drug-delivery applications. In addition, the use of the developed protein materials is not limited to delivery of drugs but can for example be employed as components of smart food (delivery of nutrients) or release systems of pesticides.File | Dimensione | Formato | |
---|---|---|---|
ChemSusChem - 2021 - Yuan - Mechanochemical Preparation of Protein hydantoin Hybrids and Their Release Properties.pdf
accesso aperto
Tipologia:
versione editoriale (VoR)
Dimensione
1.01 MB
Formato
Adobe PDF
|
1.01 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.