Membrane bound O-acyltransferase domain- containing 7 (MBOAT7, also known as LPIAT1) is a protein involved in the acyl chain remodeling of phospholipids via the Lands’ cycle. The MBOAT7 is a susceptibility risk genetic locus for non-alcoholic fatty liver disease (NAFLD) and mental retardation. Although it has been shown that MBOAT7 is associated to membranes, the MBOAT7 topology remains unknown. To solve the topological organization of MBOAT7, we performed: A) solubilization of the total membrane fraction of cells overexpressing the recombinant MBOAT7-V5, which revealed MBOAT7 is an integral protein strongly attached to endomembranes; B) in silico analysis by using 22 computational methods, which predicted the number and localization of transmembrane domains of MBOAT7 with a range between 5 and 12; C) in vitro analysis of living cells transfected with GFP-tagged MBOAT7 full length and truncated forms, using a combination of Western Blotting, co-immunofluorescence and Fluorescence Protease Protection (FPP) assay; D) in vitro analysis of living cells transfected with FLAG-tagged MBOAT7 full length forms, using a combination of Western Blotting, selective membrane permeabilization followed by indirect immunofluorescence. All together, these data revealed that MBOAT7 is a multispanning transmembrane protein with six transmembrane domains. Based on our model, the predicted catalytic dyad of the protein, composed of the conserved asparagine in position 321 (Asn-321) and the preserved histidine in position 356 (His-356), has a lumenal localization. These data are compatible with the role of MBOAT7 in remodeling the acyl chain composition of endomembranes.

MBOAT7 is anchored to endomembranes by six transmembrane domains

Caddeo A.
Co-primo
Methodology
;
2019-01-01

Abstract

Membrane bound O-acyltransferase domain- containing 7 (MBOAT7, also known as LPIAT1) is a protein involved in the acyl chain remodeling of phospholipids via the Lands’ cycle. The MBOAT7 is a susceptibility risk genetic locus for non-alcoholic fatty liver disease (NAFLD) and mental retardation. Although it has been shown that MBOAT7 is associated to membranes, the MBOAT7 topology remains unknown. To solve the topological organization of MBOAT7, we performed: A) solubilization of the total membrane fraction of cells overexpressing the recombinant MBOAT7-V5, which revealed MBOAT7 is an integral protein strongly attached to endomembranes; B) in silico analysis by using 22 computational methods, which predicted the number and localization of transmembrane domains of MBOAT7 with a range between 5 and 12; C) in vitro analysis of living cells transfected with GFP-tagged MBOAT7 full length and truncated forms, using a combination of Western Blotting, co-immunofluorescence and Fluorescence Protease Protection (FPP) assay; D) in vitro analysis of living cells transfected with FLAG-tagged MBOAT7 full length forms, using a combination of Western Blotting, selective membrane permeabilization followed by indirect immunofluorescence. All together, these data revealed that MBOAT7 is a multispanning transmembrane protein with six transmembrane domains. Based on our model, the predicted catalytic dyad of the protein, composed of the conserved asparagine in position 321 (Asn-321) and the preserved histidine in position 356 (His-356), has a lumenal localization. These data are compatible with the role of MBOAT7 in remodeling the acyl chain composition of endomembranes.
2019
Acyltransferase
Arachidonic acid (AA) (ARA)
Lipid metabolism
MBOAT7
Membrane protein
Phosphatidylinositol
Protein structure
Protein topology
Transmembrane domain
Acyltransferases
Cell Membrane
Computer Simulation
Gene Expression Regulation
Humans
Membrane Proteins
Non-alcoholic Fatty Liver Disease
Protein Domains
Recombinant Proteins
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/333762
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 27
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 42
social impact