In recent years, lipid bicontinuous cubic liquid-crystalline nanoparticles known as cubosomes have been under investigation because of their favorable properties as drug nanocarriers useful for anticancer treatments. Herein, we present organic/inorganic hybrid, theranostic cubosomes stabilized in water with a shell of alternate layers of chitosan, single strand DNA (model genetic material for potential gene therapy), and folic acid-chitosan conjugate (the outmost layer), coencapsulating up-converting Er3+ and Yb3+ codoped NaYF4 nanoparticles and daunorubicin. The latter acts as a chemotherapeutic drug of photosensitizing activity, while up-converting nanoparticles serve as energy harvester and diagnostic agent. Cellular uptake and NIR-induced photodynamic therapy were evaluated in vitro against human skin melanoma (MeWo) and ovarian (SKOV-3) cancer cells. Results evidenced the preferential uptake of the theranostic cubosomes in SKOV-3 cells in comparison to uptake in MeWo cells, and this effect was enhanced by the folic acid functionalization of the cubosomes surface. Nanocarriers coloaded with the hybrid fluorophores exhibited a superior NIR-induced photodynamic activity, also confirmed by the improved mitochondrial activity and the most affecting f-actin fibers of cytoskeleton. Similar results, but with higher photocytotoxicity, were detected when folic acid-functionalized cubosomes were incubated with SKOV-3 cells. Taken on the whole, these results prove these hybrid cubosomes are good candidates for the photodynamic treatment of tumor lesions.
Hybrid Theranostic Cubosomes for Efficient NIR-Induced Photodynamic Therapy
Picci G.;Fornasier M.;Caltagirone C.;Mezzenga R.;Murgia S.
2022-01-01
Abstract
In recent years, lipid bicontinuous cubic liquid-crystalline nanoparticles known as cubosomes have been under investigation because of their favorable properties as drug nanocarriers useful for anticancer treatments. Herein, we present organic/inorganic hybrid, theranostic cubosomes stabilized in water with a shell of alternate layers of chitosan, single strand DNA (model genetic material for potential gene therapy), and folic acid-chitosan conjugate (the outmost layer), coencapsulating up-converting Er3+ and Yb3+ codoped NaYF4 nanoparticles and daunorubicin. The latter acts as a chemotherapeutic drug of photosensitizing activity, while up-converting nanoparticles serve as energy harvester and diagnostic agent. Cellular uptake and NIR-induced photodynamic therapy were evaluated in vitro against human skin melanoma (MeWo) and ovarian (SKOV-3) cancer cells. Results evidenced the preferential uptake of the theranostic cubosomes in SKOV-3 cells in comparison to uptake in MeWo cells, and this effect was enhanced by the folic acid functionalization of the cubosomes surface. Nanocarriers coloaded with the hybrid fluorophores exhibited a superior NIR-induced photodynamic activity, also confirmed by the improved mitochondrial activity and the most affecting f-actin fibers of cytoskeleton. Similar results, but with higher photocytotoxicity, were detected when folic acid-functionalized cubosomes were incubated with SKOV-3 cells. Taken on the whole, these results prove these hybrid cubosomes are good candidates for the photodynamic treatment of tumor lesions.File | Dimensione | Formato | |
---|---|---|---|
Murgia_ACSNano+2022-min.pdf
accesso aperto
Tipologia:
versione editoriale (VoR)
Dimensione
691.11 kB
Formato
Adobe PDF
|
691.11 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.