Recent collapse events of existing reinforced concrete bridges have increased the attention on the mandatory and suitable maintenance of these strategic constructions. In fact, most of these failures were due to an inadequate scheduling of maintenance interventions. One of the main issues concerning the load-bearing capacity of existing reinforced concrete structures is related to the steel reinforcement corrosion caused by carbonation phenomenon. Such aspect should not be even more overlooked considering the strategic role of infrastructures like the bridges of the Italian motorway network, mainly built around the 1960′ s and widely used even right now. Consequently, reinforced concrete bridges require the execution of maintenance interventions in order to guarantee an adequate safety level under both serviceability conditions and exceptional loads, also considering that they were often designed without taking into account seismic actions. This paper investigates the seismic performance of five existing reinforced concrete bridges under several corrosion scenarios of piers steel reinforcement caused by carbonation phenomenon. In particular, three different corrosion levels (slight, moderate and high) are considered by analysing the evolution of the phenomenon effects for a structure lifetime equal to 75 years. The seismic vulnerability is evaluated by defining appropriate risk indices expressed in terms of peak ground acceleration and corresponding return period. The risk indices are determined by performing modal pushover analyses on finite element models of the bridges, considering the corrosion effects in terms of steel rebars cross section reduction. Some correlations between corrosion levels and risk indices are drawn.

Influence of corrosion effects on the seismic capacity of existing RC bridges

Marco Zucca
;
2022-01-01

Abstract

Recent collapse events of existing reinforced concrete bridges have increased the attention on the mandatory and suitable maintenance of these strategic constructions. In fact, most of these failures were due to an inadequate scheduling of maintenance interventions. One of the main issues concerning the load-bearing capacity of existing reinforced concrete structures is related to the steel reinforcement corrosion caused by carbonation phenomenon. Such aspect should not be even more overlooked considering the strategic role of infrastructures like the bridges of the Italian motorway network, mainly built around the 1960′ s and widely used even right now. Consequently, reinforced concrete bridges require the execution of maintenance interventions in order to guarantee an adequate safety level under both serviceability conditions and exceptional loads, also considering that they were often designed without taking into account seismic actions. This paper investigates the seismic performance of five existing reinforced concrete bridges under several corrosion scenarios of piers steel reinforcement caused by carbonation phenomenon. In particular, three different corrosion levels (slight, moderate and high) are considered by analysing the evolution of the phenomenon effects for a structure lifetime equal to 75 years. The seismic vulnerability is evaluated by defining appropriate risk indices expressed in terms of peak ground acceleration and corresponding return period. The risk indices are determined by performing modal pushover analyses on finite element models of the bridges, considering the corrosion effects in terms of steel rebars cross section reduction. Some correlations between corrosion levels and risk indices are drawn.
2022
Existing RC bridges; Steel corrosion; Concrete carbonation; Modal pushover analysis; Seismic vulnerability
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1350630722005209-main (2)_compressed.pdf

Solo gestori archivio

Tipologia: versione editoriale (VoR)
Dimensione 1.15 MB
Formato Adobe PDF
1.15 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Corrosio_effect_bridge_OA.pdf

Open Access dal 16/06/2024

Tipologia: versione post-print (AAM)
Dimensione 3.4 MB
Formato Adobe PDF
3.4 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/339849
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 40
social impact