Let Bn ⊂ ℝn and Sn ⊂ Rn+1 denote the Euclidean n-dimensional unit ball and sphere, respectively. The extrinsic k-energy functional is defined on the Sobolev space Wk,2 (Bn, Sn) as follows: Ekext(u) = ∫Bn |Δs u|2 dx when k = 2s, and Ekext(u) = ∫Bn|∇ Δs u|2 dx when k = 2s + 1. These energy functionals are a natural higher order version of the classical extrinsic bienergy, also called Hessian energy. The equator map u∗: Bn → Sn, defined by u∗(x) = (x/|x|,0), is a critical point of Ekext(u) provided that n ≥ 2k + 1. The main aim of this paper is to establish necessary and sufficient conditions on k and n under which u∗: Bn → Sn is minimizing or unstable for the extrinsic k-energy.

On the Stability of the Equator Map for Higher Order Energy Functionals

Fardoun A.;Montaldo S.;Ratto A.
2022-01-01

Abstract

Let Bn ⊂ ℝn and Sn ⊂ Rn+1 denote the Euclidean n-dimensional unit ball and sphere, respectively. The extrinsic k-energy functional is defined on the Sobolev space Wk,2 (Bn, Sn) as follows: Ekext(u) = ∫Bn |Δs u|2 dx when k = 2s, and Ekext(u) = ∫Bn|∇ Δs u|2 dx when k = 2s + 1. These energy functionals are a natural higher order version of the classical extrinsic bienergy, also called Hessian energy. The equator map u∗: Bn → Sn, defined by u∗(x) = (x/|x|,0), is a critical point of Ekext(u) provided that n ≥ 2k + 1. The main aim of this paper is to establish necessary and sufficient conditions on k and n under which u∗: Bn → Sn is minimizing or unstable for the extrinsic k-energy.
2022
Higher Order Energy; Stability; Equator Map
File in questo prodotto:
File Dimensione Formato  
2007.01509.pdf

accesso aperto

Descrizione: Main article
Tipologia: versione pre-print
Dimensione 226.72 kB
Formato Adobe PDF
226.72 kB Adobe PDF Visualizza/Apri
IMRN-FMO.pdf

Solo gestori archivio

Tipologia: versione editoriale
Dimensione 235.63 kB
Formato Adobe PDF
235.63 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/341532
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact