The consumption of dietary phytochemicals has been associated with several health benefits and relevant biological activities. It is postulated that biotransformations of these compounds regulated by the microbiota, Phase I/II reactions, transport proteins, and deconjugating enzymes contribute not only to their metabolic clearance but also, in some cases, to their bioactivation. A number of factors (age, genetics, sex, physiopathological conditions, and the interplay with other dietary phytochemicals) modulating metabolic activities are important sources and contributors to the interindividual variability observed in clinical studies evaluating the biological activities of phytochemicals. In this review, we discuss all the processes that can affect the bioaccessibility and beneficial effects of these bioactive compounds. Herein, we argue that the role of these factors must be further studied to correctly understand and predict the effects observed following the intake of phytochemicals. This is, in particular, with regard to in vitro investigations, which have shown great inconsistency with preclinical and clinical studies. The complexity of in vivo metabolic activity and biotransformation should therefore be considered in the interpretation of results in vitro and their translation to human physiopathology.

Contribution of Biotransformations Carried Out by the Microbiota, Drug-Metabolizing Enzymes, and Transport Proteins to the Biological Activities of Phytochemicals Found in the Diet

Serreli, G
Co-primo
;
Deiana, M;
2021-01-01

Abstract

The consumption of dietary phytochemicals has been associated with several health benefits and relevant biological activities. It is postulated that biotransformations of these compounds regulated by the microbiota, Phase I/II reactions, transport proteins, and deconjugating enzymes contribute not only to their metabolic clearance but also, in some cases, to their bioactivation. A number of factors (age, genetics, sex, physiopathological conditions, and the interplay with other dietary phytochemicals) modulating metabolic activities are important sources and contributors to the interindividual variability observed in clinical studies evaluating the biological activities of phytochemicals. In this review, we discuss all the processes that can affect the bioaccessibility and beneficial effects of these bioactive compounds. Herein, we argue that the role of these factors must be further studied to correctly understand and predict the effects observed following the intake of phytochemicals. This is, in particular, with regard to in vitro investigations, which have shown great inconsistency with preclinical and clinical studies. The complexity of in vivo metabolic activity and biotransformation should therefore be considered in the interpretation of results in vitro and their translation to human physiopathology.
2021
phytochemicals
phenolic compounds
microbiota
drug-metabolizing enzymes
transport proteins
phytochemicals metabolism
interindividual variability
Carrier Proteins
Diet
Humans
Phytochemicals
Biotransformation
Gastrointestinal Microbiome
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/342853
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 19
social impact