This paper presents an innovative vehicle monitoring system based on Wi-Fi sniffing devices and real-time data processing using machine learning techniques. Our solution involves the construction of a neural network-based multiclass classifier that can classify the incoming Wi-Fi signal from many sources based on the received signal strength. The solution was carried out by training the neural network to predict different output classes corresponding to different vehicular (0-30Km/h,30-60Km/h, 60-90Km/h, 90-120Km/h) and several pedestrian speed ranges among 0-15Km/h.
A passive Wi-Fi based monitoring system for urban flows detection
Fadda, Mauro;Sole, Mariella;Anedda, Matteo
;Giusto, Daniele D.
2022-01-01
Abstract
This paper presents an innovative vehicle monitoring system based on Wi-Fi sniffing devices and real-time data processing using machine learning techniques. Our solution involves the construction of a neural network-based multiclass classifier that can classify the incoming Wi-Fi signal from many sources based on the received signal strength. The solution was carried out by training the neural network to predict different output classes corresponding to different vehicular (0-30Km/h,30-60Km/h, 60-90Km/h, 90-120Km/h) and several pedestrian speed ranges among 0-15Km/h.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2022118291.pdf
Solo gestori archivio
Tipologia:
versione editoriale (VoR)
Dimensione
1.46 MB
Formato
Adobe PDF
|
1.46 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.