Numerical simulations of the wind flow around isolated stockpiles of bulk material are performed to assess the emission potential (P) of particulate matter (PM) from the pile surfaces exposed to wind erosion (i.e., industrial wind erosion). The analysis is focused on two metal sulphides (lead and zinc sulphides), which are typically stored in the open yards of industrial plants that operate in the commodity sector for the production of non-ferrous metals. The EPA methodology is applied to the numerical simulated flow fields to quantify the effect of the wind stress over the erodible surfaces of the two ores. Two alternative open bay geometries and different volumes of material stocked within the enclosing walls are considered. Moreover, the protective effect of the walls is assessed by comparing the same pile configurations without walls. This is found to be highly dependent on the wind direction, as well as to the pile configuration. A methodology that can be easily customized to specific industrial sites is proposed to define the best storage configuration for PM emission prevention and control. View Full-Text

Numerical Investigation on the PM Emission Potential of Metal Sulphides Open Storage

Badas, Maria Grazia
;
Dentoni, Valentina;Angius, Federico;Pinna, Francesco
2022-01-01

Abstract

Numerical simulations of the wind flow around isolated stockpiles of bulk material are performed to assess the emission potential (P) of particulate matter (PM) from the pile surfaces exposed to wind erosion (i.e., industrial wind erosion). The analysis is focused on two metal sulphides (lead and zinc sulphides), which are typically stored in the open yards of industrial plants that operate in the commodity sector for the production of non-ferrous metals. The EPA methodology is applied to the numerical simulated flow fields to quantify the effect of the wind stress over the erodible surfaces of the two ores. Two alternative open bay geometries and different volumes of material stocked within the enclosing walls are considered. Moreover, the protective effect of the walls is assessed by comparing the same pile configurations without walls. This is found to be highly dependent on the wind direction, as well as to the pile configuration. A methodology that can be easily customized to specific industrial sites is proposed to define the best storage configuration for PM emission prevention and control. View Full-Text
2022
Keywords: PM emission; industrial wind erosion; computational fluid mechanics; RANS; stockpiles of granular materials; emission prevention and control; air pollution
File in questo prodotto:
File Dimensione Formato  
atmosphere-13-01417-v2.pdf

accesso aperto

Descrizione: Numerical Investigation on the PM Emission Potential of Metal Sulphides Open Storage
Tipologia: versione editoriale (VoR)
Dimensione 4.04 MB
Formato Adobe PDF
4.04 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/344275
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact