Inspired by the work of Lu and Tian (Duke Math J 125:351--387, 2004), Loi et al. address in (Abh Math Semin Univ Hambg 90: 99-109, 2020) the problem of studying those Kähler manifolds satisfying the Δ -property, i.e. such that on a neighborhood of each of its points the k-th power of the Kähler Laplacian is a polynomial function of the complex Euclidean Laplacian, for all positive integer k. In particular they conjectured that if a Kähler manifold satisfies the Δ -property then it is a complex space form. This paper is dedicated to the proof of the validity of this conjecture.

On the Δ -property for complex space forms

Mossa R.
2021-01-01

Abstract

Inspired by the work of Lu and Tian (Duke Math J 125:351--387, 2004), Loi et al. address in (Abh Math Semin Univ Hambg 90: 99-109, 2020) the problem of studying those Kähler manifolds satisfying the Δ -property, i.e. such that on a neighborhood of each of its points the k-th power of the Kähler Laplacian is a polynomial function of the complex Euclidean Laplacian, for all positive integer k. In particular they conjectured that if a Kähler manifold satisfies the Δ -property then it is a complex space form. This paper is dedicated to the proof of the validity of this conjecture.
2021
Hermitian symmetric spaces
Kähler Laplacian
Kähler manifolds
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/345096
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact