Let f:(Y,g)→(X,g 0 ) be a nonzero degree continuous map between compact Kähler manifolds of dimension n≥2, where g 0 has constant negative holomorphic sectional curvature. Adapting the Besson–Courtois–Gallot barycentre map techniques to the Kähler setting, we prove a gap theorem in terms of the degree of f and the diastatic entropies of (Y,g) and (X,g 0 ) which extends the rigidity result proved by the author in [13].

On the diastatic entropy and C^1-rigidity of complex hyperbolic manifolds

Mossa R.
2019-01-01

Abstract

Let f:(Y,g)→(X,g 0 ) be a nonzero degree continuous map between compact Kähler manifolds of dimension n≥2, where g 0 has constant negative holomorphic sectional curvature. Adapting the Besson–Courtois–Gallot barycentre map techniques to the Kähler setting, we prove a gap theorem in terms of the degree of f and the diastatic entropies of (Y,g) and (X,g 0 ) which extends the rigidity result proved by the author in [13].
2019
Barycentre map
Complex hyperbolic manifolds
Diastasis
Diastatic entropy
Volume entropy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/345097
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact