Let f: Y → X be a continuous map between a compact real analytic Kähler manifold (Y, g) and a compact complex hyperbolic manifold (X, g0). In this paper we give a lower bound of the diastatic entropy of (Y, g) in terms of the diastatic entropy of (X, g0) and the degree of f. When the lower bound is attained we get geometric rigidity theorems for the diastatic entropy analogous to the ones obtained by G. Besson, G. Courtois and S. Gallot [2] for the volume entropy. As a corollary, when X = Y, we get that the minimal diastatic entropy is achieved if and only if g is isometric to the hyperbolic metric g0.

Diastatic entropy and rigidity of complex hyperbolic manifolds

Mossa R.
2016-01-01

Abstract

Let f: Y → X be a continuous map between a compact real analytic Kähler manifold (Y, g) and a compact complex hyperbolic manifold (X, g0). In this paper we give a lower bound of the diastatic entropy of (Y, g) in terms of the diastatic entropy of (X, g0) and the degree of f. When the lower bound is attained we get geometric rigidity theorems for the diastatic entropy analogous to the ones obtained by G. Besson, G. Courtois and S. Gallot [2] for the volume entropy. As a corollary, when X = Y, we get that the minimal diastatic entropy is achieved if and only if g is isometric to the hyperbolic metric g0.
2016
barycentre map; complex hyperbolic manifolds; diastasis; diastatic entropy; volume entropy
File in questo prodotto:
File Dimensione Formato  
[12] R. Mossa, Diastatic entropy and rigidity of complex hyperbolic manifolds, Complex Manifolds 3 (2016), 186-192.pdf

Solo gestori archivio

Tipologia: versione editoriale
Dimensione 406.99 kB
Formato Adobe PDF
406.99 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/345099
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact