In this paper we provide a positive answer to a conjecture due to Di Scala et al. (Asian J Math, 2012, Conjecture 1) claiming that a simply-connected homogeneous Kähler manifold M endowed with an integral Kähler form μ0ω, admits a holomorphic isometric immersion in the complex projective space, for a suitable >0μ0>0. This result has two corollaries which extend to homogeneous Kähler manifolds the results obtained by the authors Loi and Mossa (Geom Dedicata 161:119–128, 2012) and Mossa (J Geom Phys 86:492–496, 2014) for homogeneous bounded domains.

Some remarks on homogeneous Kähler manifolds

Loi A.;Mossa R.
2015-01-01

Abstract

In this paper we provide a positive answer to a conjecture due to Di Scala et al. (Asian J Math, 2012, Conjecture 1) claiming that a simply-connected homogeneous Kähler manifold M endowed with an integral Kähler form μ0ω, admits a holomorphic isometric immersion in the complex projective space, for a suitable >0μ0>0. This result has two corollaries which extend to homogeneous Kähler manifolds the results obtained by the authors Loi and Mossa (Geom Dedicata 161:119–128, 2012) and Mossa (J Geom Phys 86:492–496, 2014) for homogeneous bounded domains.
2015
Balanced metrics
Berezin quantization
Bounded homogeneous domain
Calabi’s diastasis function
Diastatic Entropy
Kähler metrics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/345101
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 20
social impact