This paper is about state estimation in a timed probabilistic setting. The main contribution is a general procedure to design an observer for computing the probabilities of the states for labeled continuous time Markov models as functions of time, based on a sequence of observations and their associated time stamps that have been collected thus far. Two notions of state consistency with respect to such a timed observation sequence are introduced and related necessary and sufficient conditions are derived. The method is then applied to the detection of cyber-attacks. The plant and the possible attacks are described in terms of a labeled continuous time Markov model that includes both observable and unobservable events, and where each attack corresponds to a particular subset of states. Consequently, attack detection is reformulated as a state estimation problem.

Probabilistic state estimation for labeled continuous time Markov models with applications to attack detection

Dimitri Lefebvre
Primo
;
Carla Seatzu;Alessandro Giua
Ultimo
2022-01-01

Abstract

This paper is about state estimation in a timed probabilistic setting. The main contribution is a general procedure to design an observer for computing the probabilities of the states for labeled continuous time Markov models as functions of time, based on a sequence of observations and their associated time stamps that have been collected thus far. Two notions of state consistency with respect to such a timed observation sequence are introduced and related necessary and sufficient conditions are derived. The method is then applied to the detection of cyber-attacks. The plant and the possible attacks are described in terms of a labeled continuous time Markov model that includes both observable and unobservable events, and where each attack corresponds to a particular subset of states. Consequently, attack detection is reformulated as a state estimation problem.
2022
Finite state automata; Markov models; Observers; Cyber-attack detection
File in questo prodotto:
File Dimensione Formato  
22deds.pdf

Solo gestori archivio

Tipologia: versione editoriale (VoR)
Dimensione 2.34 MB
Formato Adobe PDF
2.34 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
22deds_up_draft.pdf

Open Access dal 01/04/2023

Tipologia: versione post-print (AAM)
Dimensione 705.04 kB
Formato Adobe PDF
705.04 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/345189
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 4
social impact