In this study, we present optical isolators and circulators fabricated by bonding cerium-substituted yttrium iron garnet (Ce:YIG) on silicon microring resonators. A novel integrated electromagnet is fabricated by depositing a metal micro-strip on the bonded chip. We experimentally prove that it can be efficiently used to control the magnetic field needed to induce the nonreciprocal phase shift effect in the Ce:YIG. The fabricated devices exhibit extremely small footprint (<70 mu m) and can be packaged, eliminating the need of a large size permanent magnet. A large optical isolation of 32 dB and 11 dB is measured for the isolator and the circulator, respectively. Moreover, a two microring solution is also investigated to provide larger bandwidth and higher isolation. The proposed approach represents a promising solution for large-scale integration of nonreciprocal components in silicon photonics.

Microring-Based Optical Isolator and Circulator with Integrated Electromagnet for Silicon Photonics

Pintus, P
;
2017-01-01

Abstract

In this study, we present optical isolators and circulators fabricated by bonding cerium-substituted yttrium iron garnet (Ce:YIG) on silicon microring resonators. A novel integrated electromagnet is fabricated by depositing a metal micro-strip on the bonded chip. We experimentally prove that it can be efficiently used to control the magnetic field needed to induce the nonreciprocal phase shift effect in the Ce:YIG. The fabricated devices exhibit extremely small footprint (<70 mu m) and can be packaged, eliminating the need of a large size permanent magnet. A large optical isolation of 32 dB and 11 dB is measured for the isolator and the circulator, respectively. Moreover, a two microring solution is also investigated to provide larger bandwidth and higher isolation. The proposed approach represents a promising solution for large-scale integration of nonreciprocal components in silicon photonics.
2017
Integrated optoelectronics
magnetooptic devices
microresonators
optical circulators
optical isolators
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/345283
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 75
  • ???jsp.display-item.citation.isi??? 67
social impact