While machine learning is vulnerable to adversarial examples, it still lacks systematic procedures and tools for evaluating its security in different contexts. We discuss how to develop automated and scalable security evaluations of machine learning using practical attacks, reporting a use case on Windows malware detection.
Practical Attacks on Machine Learning: A Case Study on Adversarial Windows Malware
Demetrio, L
;Biggio, B;Roli, F
2022-01-01
Abstract
While machine learning is vulnerable to adversarial examples, it still lacks systematic procedures and tools for evaluating its security in different contexts. We discuss how to develop automated and scalable security evaluations of machine learning using practical attacks, reporting a use case on Windows malware detection.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Practical_Attacks_on_Machine_Learning_A_Case_Study_on_Adversarial_Windows_Malware.pdf
Solo gestori archivio
Tipologia:
versione editoriale (VoR)
Dimensione
1.37 MB
Formato
Adobe PDF
|
1.37 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2207.05548.pdf
accesso aperto
Tipologia:
versione post-print (AAM)
Dimensione
2.6 MB
Formato
Adobe PDF
|
2.6 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.