While machine learning is vulnerable to adversarial examples, it still lacks systematic procedures and tools for evaluating its security in different contexts. We discuss how to develop automated and scalable security evaluations of machine learning using practical attacks, reporting a use case on Windows malware detection.

Practical Attacks on Machine Learning: A Case Study on Adversarial Windows Malware

Demetrio, L
;
Biggio, B;Roli, F
2022-01-01

Abstract

While machine learning is vulnerable to adversarial examples, it still lacks systematic procedures and tools for evaluating its security in different contexts. We discuss how to develop automated and scalable security evaluations of machine learning using practical attacks, reporting a use case on Windows malware detection.
2022
Malware; Machine learning; Optimization; Security
File in questo prodotto:
File Dimensione Formato  
Practical_Attacks_on_Machine_Learning_A_Case_Study_on_Adversarial_Windows_Malware.pdf

Solo gestori archivio

Tipologia: versione editoriale (VoR)
Dimensione 1.37 MB
Formato Adobe PDF
1.37 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2207.05548.pdf

accesso aperto

Tipologia: versione post-print (AAM)
Dimensione 2.6 MB
Formato Adobe PDF
2.6 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/345360
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact