The presence and persistence of Android malware is an on-going threat that plagues this information era, and machine learning technologies are now extensively used to deploy more effective detectors that can block the majority of these malicious programs. However, these algorithms have not been developed to pursue the natural evolution of malware, and their performances significantly degrade over time because of such concept-drift. Currently, state-of-the-art techniques only focus on detecting the presence of such drift, or they address it by relying on frequent updates of models. Hence, there is a lack of knowledge regarding the cause of the concept drift, and ad-hoc solutions that can counter the passing of time are still underinvestigated. In this work, we commence to address these issues as we propose (i) a drift-analysis framework to identify which characteristics of data are causing the drift, and (ii) SVM-CB, a time-aware classifier that leverages the drift-analysis information to slow down the performance drop. We highlight the efficacy of our contribution by comparing its degradation over time with a state-of-the-art classifier, and we show that SVM-CB better withstand the distribution changes that naturally characterizes the malware domain. We conclude by discussing the limitations of our approach and how our contribution can be taken as a first step towards more time-resistant classifiers that not only tackle, but also understand the concept drift that affect data.

Robust Machine Learning for Malware Detection over Time

Daniele Angioni
Primo
;
Luca Demetrio
Secondo
;
Maura Pintor
Penultimo
;
Battista Biggio
Ultimo
2022-01-01

Abstract

The presence and persistence of Android malware is an on-going threat that plagues this information era, and machine learning technologies are now extensively used to deploy more effective detectors that can block the majority of these malicious programs. However, these algorithms have not been developed to pursue the natural evolution of malware, and their performances significantly degrade over time because of such concept-drift. Currently, state-of-the-art techniques only focus on detecting the presence of such drift, or they address it by relying on frequent updates of models. Hence, there is a lack of knowledge regarding the cause of the concept drift, and ad-hoc solutions that can counter the passing of time are still underinvestigated. In this work, we commence to address these issues as we propose (i) a drift-analysis framework to identify which characteristics of data are causing the drift, and (ii) SVM-CB, a time-aware classifier that leverages the drift-analysis information to slow down the performance drop. We highlight the efficacy of our contribution by comparing its degradation over time with a state-of-the-art classifier, and we show that SVM-CB better withstand the distribution changes that naturally characterizes the malware domain. We conclude by discussing the limitations of our approach and how our contribution can be taken as a first step towards more time-resistant classifiers that not only tackle, but also understand the concept drift that affect data.
2022
Android malware; Machine learning; Concept drift
File in questo prodotto:
File Dimensione Formato  
ITASEC-8117.pdf

accesso aperto

Tipologia: versione editoriale
Dimensione 2.77 MB
Formato Adobe PDF
2.77 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/345425
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact