Despite modern preparation techniques offer the opportunity to tailor the composition, size, and shape of magnetic nanoparticles, understanding and hence controlling the magnetic properties of such entities remains a challenging task, due to the complex interplay between the volume-related properties and the phenomena occurring at the particle’s surface. The present work investigates spinel iron oxide nanoparticles as a model system to quantitatively analyze the crossover between the bulk and the surface-dominated magnetic regimes. The magnetic properties of ensembles of nanoparticles with an average size in the range of 5–13 nm are compared. The role of surface anisotropy and the effect of oleic acid, one of the most common and versatile organic coatings, are discussed. The structural and morphological properties are investigated by X-ray diffraction and transmission electron microscopy. The size dependence of the surface contribution to the effective particle anisotropy and the magnetic structure are analyzed by magnetization measurements and in-field Mössbauer spectrometry. The structural data combined with magnetometry and Mössbauer spectrometry analysis are used to shed light on this complex scenario revealing a crossover between volume and surface-driven properties in the range of 5–7 nm.

The Boundary Between Volume and Surface-Driven Magnetic Properties in Spinel Iron Oxide Nanoparticles

Muscas, Giuseppe
Primo
;
Congiu, Francesco;Concas, Giorgio;Cannas, Carla;Mameli, Valentina;
2022-01-01

Abstract

Despite modern preparation techniques offer the opportunity to tailor the composition, size, and shape of magnetic nanoparticles, understanding and hence controlling the magnetic properties of such entities remains a challenging task, due to the complex interplay between the volume-related properties and the phenomena occurring at the particle’s surface. The present work investigates spinel iron oxide nanoparticles as a model system to quantitatively analyze the crossover between the bulk and the surface-dominated magnetic regimes. The magnetic properties of ensembles of nanoparticles with an average size in the range of 5–13 nm are compared. The role of surface anisotropy and the effect of oleic acid, one of the most common and versatile organic coatings, are discussed. The structural and morphological properties are investigated by X-ray diffraction and transmission electron microscopy. The size dependence of the surface contribution to the effective particle anisotropy and the magnetic structure are analyzed by magnetization measurements and in-field Mössbauer spectrometry. The structural data combined with magnetometry and Mössbauer spectrometry analysis are used to shed light on this complex scenario revealing a crossover between volume and surface-driven properties in the range of 5–7 nm.
2022
Nanomagnetism; Nanoparticles; Ferrites; Surface properties; Exchange bias
File in questo prodotto:
File Dimensione Formato  
Muscas et al. - 2022 - The Boundary Between Volume and Surface-Driven Mag.pdf

accesso aperto

Tipologia: versione editoriale (VoR)
Dimensione 5.32 MB
Formato Adobe PDF
5.32 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/345934
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact