Identifying the most important nodes according to specific centrality indices is an important issue in network analysis. Node metrics based on the computation of functions of the adjacency matrix of a network were defined by Estrada and his collaborators in various papers. This paper describes a MATLAB toolbox for computing such centrality indices using efficient numerical algorithms based on the connection between the Lanczos method and Gauss-type quadrature rules.
SoftNet: A Package for the Analysis of Complex Networks
Fenu, C;Rodriguez, G
2022-01-01
Abstract
Identifying the most important nodes according to specific centrality indices is an important issue in network analysis. Node metrics based on the computation of functions of the adjacency matrix of a network were defined by Estrada and his collaborators in various papers. This paper describes a MATLAB toolbox for computing such centrality indices using efficient numerical algorithms based on the connection between the Lanczos method and Gauss-type quadrature rules.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
softnet22.pdf
accesso aperto
Tipologia:
versione editoriale (VoR)
Dimensione
1.43 MB
Formato
Adobe PDF
|
1.43 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.