Background and Motivation: The novel coronavirus causing COVID-19 is exceptionally contagious, highly mutative, decimating human health and life, as well as the global economy, by consistent evolution of new pernicious variants and outbreaks. The reverse transcriptase polymer-ase chain reaction currently used for diagnosis has major limitations. Furthermore, the multiclass lung classification X-ray systems having viral, bacterial, and tubercular classes—including COVID-19—are not reliable. Thus, there is a need for a robust, fast, cost-effective, and easily available diagnostic method. Method: Artificial intelligence (AI) has been shown to revolutionize all walks of life, particularly medical imaging. This study proposes a deep learning AI-based automatic multiclass detection and classification of pneumonia from chest X-ray images that are readily available and highly cost-effective. The study has designed and applied seven highly efficient pre-trained convo-lutional neural networks—namely, VGG16, VGG19, DenseNet201, Xception, InceptionV3, NasnetMobile, and ResNet152—for classification of up to five classes of pneumonia. Results: The database consisted of 18,603 scans with two, three, and five classes. The best results were using DenseNet201, VGG16, and VGG16, respectively having accuracies of 99.84%, 96.7%, 92.67%; sensitivity of 99.84%, 96.63%, 92.70%; specificity of 99.84, 96.63%, 92.41%; and AUC of 1.0, 0.97, 0.92 (p <0.0001 for all), respectively. Our system outperformed existing methods by 1.2% for the five-class model. The online system takes <1 second while demonstrating reliability and stability. Conclu-sions: Deep learning AI is a powerful paradigm for multiclass pneumonia classification.

Four Types of Multiclass Frameworks for Pneumonia Classification and Its Validation in X-ray Scans Using Seven Types of Deep Learning Artificial Intelligence Models

Saba L.;
2022-01-01

Abstract

Background and Motivation: The novel coronavirus causing COVID-19 is exceptionally contagious, highly mutative, decimating human health and life, as well as the global economy, by consistent evolution of new pernicious variants and outbreaks. The reverse transcriptase polymer-ase chain reaction currently used for diagnosis has major limitations. Furthermore, the multiclass lung classification X-ray systems having viral, bacterial, and tubercular classes—including COVID-19—are not reliable. Thus, there is a need for a robust, fast, cost-effective, and easily available diagnostic method. Method: Artificial intelligence (AI) has been shown to revolutionize all walks of life, particularly medical imaging. This study proposes a deep learning AI-based automatic multiclass detection and classification of pneumonia from chest X-ray images that are readily available and highly cost-effective. The study has designed and applied seven highly efficient pre-trained convo-lutional neural networks—namely, VGG16, VGG19, DenseNet201, Xception, InceptionV3, NasnetMobile, and ResNet152—for classification of up to five classes of pneumonia. Results: The database consisted of 18,603 scans with two, three, and five classes. The best results were using DenseNet201, VGG16, and VGG16, respectively having accuracies of 99.84%, 96.7%, 92.67%; sensitivity of 99.84%, 96.63%, 92.70%; specificity of 99.84, 96.63%, 92.41%; and AUC of 1.0, 0.97, 0.92 (p <0.0001 for all), respectively. Our system outperformed existing methods by 1.2% for the five-class model. The online system takes <1 second while demonstrating reliability and stability. Conclu-sions: Deep learning AI is a powerful paradigm for multiclass pneumonia classification.
2022
COVID-19; Omicron; chest X-rays; deep learning; transfer learning; convolutional neural network
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/347235
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 16
social impact