Cardiovascular disease (CVD) is a major healthcare challenge and therefore early risk assessment is vital. Previous assessment techniques use either "conventional CVD risk calculators (CCVRC)" or machine learning (ML) paradigms. These techniques are ad-hoc, unreliable, not fully automated, and have variabilities. We, therefore, introduce AtheroEdge-MCDLAI (AE3.0DL) windows-based platform using multiclass Deep Learning (DL) system.
Deep learning artificial intelligence framework for multiclass coronary artery disease prediction using combination of conventional risk factors, carotid ultrasound, and intraplaque neovascularization
Saba, Luca;
2022-01-01
Abstract
Cardiovascular disease (CVD) is a major healthcare challenge and therefore early risk assessment is vital. Previous assessment techniques use either "conventional CVD risk calculators (CCVRC)" or machine learning (ML) paradigms. These techniques are ad-hoc, unreliable, not fully automated, and have variabilities. We, therefore, introduce AtheroEdge-MCDLAI (AE3.0DL) windows-based platform using multiclass Deep Learning (DL) system.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0010482522007405-main.pdf
Solo gestori archivio
Tipologia:
versione editoriale (VoR)
Dimensione
2.77 MB
Formato
Adobe PDF
|
2.77 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.