Cardiovascular disease (CVD) is a major healthcare challenge and therefore early risk assessment is vital. Previous assessment techniques use either "conventional CVD risk calculators (CCVRC)" or machine learning (ML) paradigms. These techniques are ad-hoc, unreliable, not fully automated, and have variabilities. We, therefore, introduce AtheroEdge-MCDLAI (AE3.0DL) windows-based platform using multiclass Deep Learning (DL) system.

Deep learning artificial intelligence framework for multiclass coronary artery disease prediction using combination of conventional risk factors, carotid ultrasound, and intraplaque neovascularization

Saba, Luca;
2022-01-01

Abstract

Cardiovascular disease (CVD) is a major healthcare challenge and therefore early risk assessment is vital. Previous assessment techniques use either "conventional CVD risk calculators (CCVRC)" or machine learning (ML) paradigms. These techniques are ad-hoc, unreliable, not fully automated, and have variabilities. We, therefore, introduce AtheroEdge-MCDLAI (AE3.0DL) windows-based platform using multiclass Deep Learning (DL) system.
2022
Artificial intelligence
Carotid ultrasound
Coronary artery disease prediction
Deep learning
Machine learning
Performance evaluation
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0010482522007405-main.pdf

Solo gestori archivio

Tipologia: versione editoriale (VoR)
Dimensione 2.77 MB
Formato Adobe PDF
2.77 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/347263
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 20
social impact