Coronavirus 2019 (COVID-19) has led to a global pandemic infecting 224 million people and has caused 4.6 million deaths. Nearly 80 Artificial Intelligence (AI) articles have been published on COVID-19 diagnosis. The first systematic review on the Deep Learning (DL)-based paradigm for COVID-19 diagnosis was recently published by Suri et al. [IEEE J Biomed Health Inform. 2021]. The above study used AtheroPoint’s “AP(ai)Bias 1.0” using 10 AI attributes in the DL framework. The proposed study uses “AP(ai)Bias 2.0” as part of the three quantitative paradigms for Risk-of-Bias quantification by using the best 40 dedicated Hybrid DL (HDL) studies and utilizing 39 AI attributes. In the first method, the radial-bias map (RBM) was computed for each AI study, followed by the computation of bias value. In the second method, the regional-bias area (RBA) was computed by the area difference between the best and the worst AI performing attributes. In the third method, ranking-bias score (RBS) was computed, where AI-based cumulative scores were computed for all the 40 studies. These studies were ranked, and the cutoff was determined, categorizing the HDL studies into three bins: low, moderate, and high. Using the Venn diagram, these three quantitative methods were benchmarked against the two qualitative non-randomized-based AI trial methods (ROBINS-I and PROBAST). Using the analytically derived moderate-high and low-moderate cutoff of 2.9 and 3.6, respectively, we observed 40%, 27.5%, 17.5%, 10%, and 20% of studies were low-biased for RBM, RBA, RBS, ROBINS-I, and PROBAST, respectively. We present an eight-point recommendation for AP(ai)Bias 2.0 minimization.

Five Strategies for Bias Estimation in Artificial Intelligence-based Hybrid Deep Learning for Acute Respiratory Distress Syndrome COVID-19 Lung Infected Patients using AP(ai)Bias 2.0: A Systematic Review

Saba L.;
2022-01-01

Abstract

Coronavirus 2019 (COVID-19) has led to a global pandemic infecting 224 million people and has caused 4.6 million deaths. Nearly 80 Artificial Intelligence (AI) articles have been published on COVID-19 diagnosis. The first systematic review on the Deep Learning (DL)-based paradigm for COVID-19 diagnosis was recently published by Suri et al. [IEEE J Biomed Health Inform. 2021]. The above study used AtheroPoint’s “AP(ai)Bias 1.0” using 10 AI attributes in the DL framework. The proposed study uses “AP(ai)Bias 2.0” as part of the three quantitative paradigms for Risk-of-Bias quantification by using the best 40 dedicated Hybrid DL (HDL) studies and utilizing 39 AI attributes. In the first method, the radial-bias map (RBM) was computed for each AI study, followed by the computation of bias value. In the second method, the regional-bias area (RBA) was computed by the area difference between the best and the worst AI performing attributes. In the third method, ranking-bias score (RBS) was computed, where AI-based cumulative scores were computed for all the 40 studies. These studies were ranked, and the cutoff was determined, categorizing the HDL studies into three bins: low, moderate, and high. Using the Venn diagram, these three quantitative methods were benchmarked against the two qualitative non-randomized-based AI trial methods (ROBINS-I and PROBAST). Using the analytically derived moderate-high and low-moderate cutoff of 2.9 and 3.6, respectively, we observed 40%, 27.5%, 17.5%, 10%, and 20% of studies were low-biased for RBM, RBA, RBS, ROBINS-I, and PROBAST, respectively. We present an eight-point recommendation for AP(ai)Bias 2.0 minimization.
2022
AP(ai)Bias 2.0; Artificial intelligence; Computed tomography; COVID-19; COVID-19 diagnosis; Hardware design languages
File in questo prodotto:
File Dimensione Formato  
Five_Strategies_for_Bias_Estimation_in_Artificial_Intelligence-based_Hybrid_Deep_Learning_for_Acute_Respiratory_Distress_Syndrome_COVID-19_Lung_Infected_Patients_using_APaiBias_2.0_A_Systematic_R.pdf

Solo gestori archivio

Dimensione 3.79 MB
Formato Adobe PDF
3.79 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/347275
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? ND
social impact