Non-equilibrium molecular dynamics simulations have been applied to study thermal transport properties, such as thermal conductivity and rectification, in nanoporous Si membranes. Cylindrical pores have been generated in crystalline Si membranes with different configurations, including step-like, ordered and random pore distributions. The effect of interface and overall porosity on thermal transport properties has been investigated as well as the impact of the porosity profile on the direction of the heat current. The lowest thermal conductivity and highest thermal rectification for equal porosity have been found for a step-like pore distribution. Increasing interface porosity resulted in an increase of thermal rectification, which has been found to be systematically higher for random pore distribution with respect to an ordered one. Furthermore, a maximum in rectification of 5.5% has been found for a specific overall porosity (phi(tot) = 0.02) in samples with constant interface porosity and ordered pore distribution. This has been attributed to an increased effect of asymmetric interface boundary resistance resulting from increased fluctuations of the latter with altering temperature. The average value of the interface boundary resistance has been found to decrease with increasing porosity for samples with ordered pore distribution leading to a decrease in thermal rectification.

Thermal conduction and rectification phenomena in nanoporous silicon membranes

Hahn, Konstanze R
Primo
Membro del Collaboration Group
;
Melis, Claudio
Secondo
Membro del Collaboration Group
;
Colombo, Luciano
Ultimo
Membro del Collaboration Group
2022-01-01

Abstract

Non-equilibrium molecular dynamics simulations have been applied to study thermal transport properties, such as thermal conductivity and rectification, in nanoporous Si membranes. Cylindrical pores have been generated in crystalline Si membranes with different configurations, including step-like, ordered and random pore distributions. The effect of interface and overall porosity on thermal transport properties has been investigated as well as the impact of the porosity profile on the direction of the heat current. The lowest thermal conductivity and highest thermal rectification for equal porosity have been found for a step-like pore distribution. Increasing interface porosity resulted in an increase of thermal rectification, which has been found to be systematically higher for random pore distribution with respect to an ordered one. Furthermore, a maximum in rectification of 5.5% has been found for a specific overall porosity (phi(tot) = 0.02) in samples with constant interface porosity and ordered pore distribution. This has been attributed to an increased effect of asymmetric interface boundary resistance resulting from increased fluctuations of the latter with altering temperature. The average value of the interface boundary resistance has been found to decrease with increasing porosity for samples with ordered pore distribution leading to a decrease in thermal rectification.
2022
Thermal transport
Thermal rectification
Nanoporous silicon
Atomistic simulations
File in questo prodotto:
File Dimensione Formato  
PCCP - Thermal conduction and rectification phenomena in nanoporous silicon membranes.pdf

Solo gestori archivio

Tipologia: versione editoriale (VoR)
Dimensione 3.55 MB
Formato Adobe PDF
3.55 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
post-print-IRIS.pdf

Open Access dal 15/02/2023

Tipologia: versione post-print (AAM)
Dimensione 4.88 MB
Formato Adobe PDF
4.88 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/347915
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact