The increase in CO2 concentration in the atmosphere has prompted the research community to find solutions for this environmental problem, which causes climate change and global warming. CO2 removal through the use of negative emissions technologies could lead to global emission levels becoming net negative towards the end of this century. Among these negative emissions technologies, direct air capture (DAC), in which CO2 is captured directly from the atmosphere, could play an important role. The captured CO2 can be removed in the long term and through its storage can be used for chemical processes, allowing closed carbon cycles in the short term. For DAC, different technologies have been suggested in the literature, and an overview of these is proposed in this work. Absorption and adsorption are the most studied and mature technologies, but others are also under investigation. An analysis of the main key performance indicators is also presented here and it is suggested that more efforts should be made to develop DAC at a large scale by reducing costs and improving efficiency. An additional discussion, addressing the social concern, is indicated as well.

Analysis of Technologies for Carbon Dioxide Capture from the Air

Leonzio G.
;
2022-01-01

Abstract

The increase in CO2 concentration in the atmosphere has prompted the research community to find solutions for this environmental problem, which causes climate change and global warming. CO2 removal through the use of negative emissions technologies could lead to global emission levels becoming net negative towards the end of this century. Among these negative emissions technologies, direct air capture (DAC), in which CO2 is captured directly from the atmosphere, could play an important role. The captured CO2 can be removed in the long term and through its storage can be used for chemical processes, allowing closed carbon cycles in the short term. For DAC, different technologies have been suggested in the literature, and an overview of these is proposed in this work. Absorption and adsorption are the most studied and mature technologies, but others are also under investigation. An analysis of the main key performance indicators is also presented here and it is suggested that more efforts should be made to develop DAC at a large scale by reducing costs and improving efficiency. An additional discussion, addressing the social concern, is indicated as well.
2022
atmospheric CO2; direct air capture; CO2 reduction; CO2 removal; key performance indicators; carbon capture technologies
File in questo prodotto:
File Dimensione Formato  
applsci-12-08321-v2.pdf

accesso aperto

Descrizione: articolo online
Tipologia: versione editoriale
Dimensione 4.86 MB
Formato Adobe PDF
4.86 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/348616
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 18
social impact