Inelastic collisions of the milling media in ball milling provide energy to the reaction mixture required for chemical transformations. However, movement of the milling media also results in physical mixing of reactants, which may enable a chemical reaction too. Separating the two contributions is challenging and gaining a direct insight into the purely mechanochemically driven reactivity is accordingly hindered. Here, we have applied in situ reaction monitoring by Raman spectroscopy to a suitable, purely mechanically activated, chemical reaction and combined kinetic analysis with numerical simulations to access experimentally unattainable milling parameters. The breadth of milling conditions allows us to establish a linear relationship between the reaction rate and the energy dose received by the sample. Consequently, different kinetic profiles in time scale to the same profile when plotted against the energy dose, which increases with the ball mass, the average ball velocity and the frequency of impacts, but decreases with the hardness of the milling media due to more elastic collisions. The fundamental relationship between kinetics and energy input provides the basis for planning and optimisation of mechanochemical reactions and is essential for transferability of mechanochemical reactions across different milling platforms.

Mechanochemical reaction kinetics scales linearly with impact energy

Delogu F.;
2022-01-01

Abstract

Inelastic collisions of the milling media in ball milling provide energy to the reaction mixture required for chemical transformations. However, movement of the milling media also results in physical mixing of reactants, which may enable a chemical reaction too. Separating the two contributions is challenging and gaining a direct insight into the purely mechanochemically driven reactivity is accordingly hindered. Here, we have applied in situ reaction monitoring by Raman spectroscopy to a suitable, purely mechanically activated, chemical reaction and combined kinetic analysis with numerical simulations to access experimentally unattainable milling parameters. The breadth of milling conditions allows us to establish a linear relationship between the reaction rate and the energy dose received by the sample. Consequently, different kinetic profiles in time scale to the same profile when plotted against the energy dose, which increases with the ball mass, the average ball velocity and the frequency of impacts, but decreases with the hardness of the milling media due to more elastic collisions. The fundamental relationship between kinetics and energy input provides the basis for planning and optimisation of mechanochemical reactions and is essential for transferability of mechanochemical reactions across different milling platforms.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/348799
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact