We characterise the profile curves of non-CMC biconservative rotational hyper -surfaces of space forms Nn(rho) as p -elastic curves, for a suitable rational number p & ISIN; [1/4, 1) which depends on the dimension n of the ambient space. Analysing the closure conditions of these p -elastic curves, we prove the existence of a discrete biparametric family of non-CMC closed (i.e., compact without boundary) bicon-servative hypersurfaces in Sn(rho). None of these hypersurfaces can be embedded in Sn(rho).
Closed biconservative hypersurfaces in spheres
Montaldo, S;
2023-01-01
Abstract
We characterise the profile curves of non-CMC biconservative rotational hyper -surfaces of space forms Nn(rho) as p -elastic curves, for a suitable rational number p & ISIN; [1/4, 1) which depends on the dimension n of the ambient space. Analysing the closure conditions of these p -elastic curves, we prove the existence of a discrete biparametric family of non-CMC closed (i.e., compact without boundary) bicon-servative hypersurfaces in Sn(rho). None of these hypersurfaces can be embedded in Sn(rho).File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0022247X22007119-main.pdf
Solo gestori archivio
Tipologia:
versione editoriale (VoR)
Dimensione
633.35 kB
Formato
Adobe PDF
|
633.35 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2201.11169.pdf
accesso aperto
Descrizione: preprint
Tipologia:
versione pre-print
Dimensione
1.51 MB
Formato
Adobe PDF
|
1.51 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.