Multiple JPEG compressions leave artifacts in digital images: residual traces that could be exploited in forensics investigations to recover information about the device employed for acquisition or image editing software. In this paper, a novel First Quantization Estimation (FQE) algorithm based on convolutional neural networks (CNNs) is proposed. In particular, a solution based on an ensemble of CNNs was developed in conjunction with specific regularization strategies exploiting assumptions about neighboring element values of the quantization matrix to be inferred. Mostly designed to work in the aligned case, the solution was tested in challenging scenarios involving different input patch sizes, quantization matrices (both standard and custom) and datasets (i.e., RAISE and UCID collections). Comparisons with state-of-the-art solutions confirmed the effectiveness of the presented solution demonstrating for the first time to cover the widest combinations of parameters of double JPEG compressions.

CNN-based first quantization estimation of double compressed JPEG images

Puglisi G.
Ultimo
2022-01-01

Abstract

Multiple JPEG compressions leave artifacts in digital images: residual traces that could be exploited in forensics investigations to recover information about the device employed for acquisition or image editing software. In this paper, a novel First Quantization Estimation (FQE) algorithm based on convolutional neural networks (CNNs) is proposed. In particular, a solution based on an ensemble of CNNs was developed in conjunction with specific regularization strategies exploiting assumptions about neighboring element values of the quantization matrix to be inferred. Mostly designed to work in the aligned case, the solution was tested in challenging scenarios involving different input patch sizes, quantization matrices (both standard and custom) and datasets (i.e., RAISE and UCID collections). Comparisons with state-of-the-art solutions confirmed the effectiveness of the presented solution demonstrating for the first time to cover the widest combinations of parameters of double JPEG compressions.
2022
First quantization estimation; Image tampering; JPEG; Multimedia forensics
File in questo prodotto:
File Dimensione Formato  
JVIS_2022.pdf

accesso aperto

Tipologia: versione editoriale
Dimensione 4.91 MB
Formato Adobe PDF
4.91 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/350379
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 5
social impact