In recent times, an increasing number of applications in different fields need gas sensors that are miniaturized but also capable of distinguishing different gases and volatiles. Thermal electronic noses are new devices that meet this need, but their performance is still under study. In this work, we compare the performance of two thermal electronic noses based on SnO2 and ZnO nanowires. Using five different target gases (acetone, ammonia, ethanol, hydrogen and nitrogen dioxide), we investigated the ability of the systems to distinguish individual gases and estimate their concentration. SnO2 nanowires proved to be more suitable for this purpose with a detection limit of 32 parts per billion, an always correct classification (100%) and a mean absolute error of 7 parts per million.

Sensing performance of thermal electronic noses: A comparison between ZnO and SnO2 Nanowires

Tonezzer M
Primo
;
2021-01-01

Abstract

In recent times, an increasing number of applications in different fields need gas sensors that are miniaturized but also capable of distinguishing different gases and volatiles. Thermal electronic noses are new devices that meet this need, but their performance is still under study. In this work, we compare the performance of two thermal electronic noses based on SnO2 and ZnO nanowires. Using five different target gases (acetone, ammonia, ethanol, hydrogen and nitrogen dioxide), we investigated the ability of the systems to distinguish individual gases and estimate their concentration. SnO2 nanowires proved to be more suitable for this purpose with a detection limit of 32 parts per billion, an always correct classification (100%) and a mean absolute error of 7 parts per million.
2021
metal oxide; gas sensor; resistive sensor; chemiresistor; electronic nose
File in questo prodotto:
File Dimensione Formato  
nanomaterials-11-02773.pdf

accesso aperto

Dimensione 3.13 MB
Formato Adobe PDF
3.13 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/351711
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact