We point-out an exceptional tailorability of iron(III) trimesate metal-organic framework to bio-friendly conditions. This is particularly attractive in sight of one-pot immobilization of biomolecules for biomedical applications. Synthesis is carried out via mechanochemical approach under green, biocompatible conditions without additional solvents, in just 1 hour, at room temperature. Solvents are proven to be unnecessary to build the framework, in contrast to solution-based methods. Microstructure and thermal stability of the material are not affected by pH. Conversely, textural properties can be tuned by simply varying the amount of base.

Tailoring MOFs to Biomedical Applications: A Chimera or a Concrete Reality? The Case Study of Fe-BTC by bio-friendly Mechanosynthesis

Giada Mannias;Alessandra Scano
Secondo
;
Guido Ennas
Ultimo
2023-01-01

Abstract

We point-out an exceptional tailorability of iron(III) trimesate metal-organic framework to bio-friendly conditions. This is particularly attractive in sight of one-pot immobilization of biomolecules for biomedical applications. Synthesis is carried out via mechanochemical approach under green, biocompatible conditions without additional solvents, in just 1 hour, at room temperature. Solvents are proven to be unnecessary to build the framework, in contrast to solution-based methods. Microstructure and thermal stability of the material are not affected by pH. Conversely, textural properties can be tuned by simply varying the amount of base.
2023
iron(III) trimesate; metal-organic mechanochemistry; green chemistry; biocompatibility
File in questo prodotto:
File Dimensione Formato  
Manuscript Mannias et al.pdf

accesso aperto

Tipologia: versione post-print (AAM)
Dimensione 536.77 kB
Formato Adobe PDF
536.77 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/352028
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact