A measurement of the inclusive b-jet production cross section is presented in pp and p-Pb collisions at sNN−−−√ = 5.02 TeV, using data collected with the ALICE detector at the LHC. The jets were reconstructed in the central rapidity region |η| < 0.5 from charged particles using the anti-kT algorithm with resolution parameter R = 0.4. Identification of b jets exploits the long lifetime of b hadrons, using the properties of secondary vertices and impact parameter distributions. The pT-differential inclusive production cross section of b jets, as well as the corresponding inclusive b-jet fraction, are reported for pp and p-Pb collisions in the jet transverse momentum range 10 ≤ pT,ch jet ≤ 100 GeV/c, together with the nuclear modification factor, Rb−jetpPb . The analysis thus extends the lower pT limit of b-jet measurements at the LHC. The nuclear modification factor is found to be consistent with unity, indicating that the production of b jets in p-Pb at sNN−−−√ = 5.02 TeV is not affected by cold nuclear matter effects within the current precision. The measurements are well reproduced by POWHEG NLO pQCD calculations with PYTHIA fragmentation.
Measurement of inclusive charged-particle b-jet production in pp and p-Pb collisions at root S-NN=5.02 TeV
Alocco, G.;Boi, S.;Casula, E. A. R.;De Falco, A.;Fionda, F. M.;Usai, G. L.;
2022-01-01
Abstract
A measurement of the inclusive b-jet production cross section is presented in pp and p-Pb collisions at sNN−−−√ = 5.02 TeV, using data collected with the ALICE detector at the LHC. The jets were reconstructed in the central rapidity region |η| < 0.5 from charged particles using the anti-kT algorithm with resolution parameter R = 0.4. Identification of b jets exploits the long lifetime of b hadrons, using the properties of secondary vertices and impact parameter distributions. The pT-differential inclusive production cross section of b jets, as well as the corresponding inclusive b-jet fraction, are reported for pp and p-Pb collisions in the jet transverse momentum range 10 ≤ pT,ch jet ≤ 100 GeV/c, together with the nuclear modification factor, Rb−jetpPb . The analysis thus extends the lower pT limit of b-jet measurements at the LHC. The nuclear modification factor is found to be consistent with unity, indicating that the production of b jets in p-Pb at sNN−−−√ = 5.02 TeV is not affected by cold nuclear matter effects within the current precision. The measurements are well reproduced by POWHEG NLO pQCD calculations with PYTHIA fragmentation.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.