Neutral pion (π 0) and η meson production cross sections were measured up to unprecedentedly high transverse momenta (pT) in p–Pb collisions at √sNN = 8.16 TeV. The mesons were reconstructed via their two-photon decay channel in the rapidity interval −1.3 < y < 0.3 in the ranges of 0.4 < pT < 200 GeV/c and 1.0 < pT < 50 GeV/c, respectively. The respective nuclear modification factor (RpPb) is presented for pT up to of 200 and 30 GeV/c, where the former was achieved by extending the π 0 measurement in pp collisions at √s = 8 TeV using the merged cluster technique. The values of RpPb are below unity for pT < 10 GeV/c, while they are consistent with unity for pT > 10 GeV/c, leaving essentially no room for final state energy loss. The new data provide strong constraints for nuclear parton distribution and fragmentation functions over a broad kinematic range and are compared to model predictions as well as previous results at √sNN = 5.02 TeV.
Nuclear modification factor of light neutral-meson spectra up to high transverse momentum in p-Pb collisions at root S-NN=8.16 TeV
Boi, S.;Casula, E. A. R.;De Falco, A.;Fionda, F. M.;Usai, G. L.;
2022-01-01
Abstract
Neutral pion (π 0) and η meson production cross sections were measured up to unprecedentedly high transverse momenta (pT) in p–Pb collisions at √sNN = 8.16 TeV. The mesons were reconstructed via their two-photon decay channel in the rapidity interval −1.3 < y < 0.3 in the ranges of 0.4 < pT < 200 GeV/c and 1.0 < pT < 50 GeV/c, respectively. The respective nuclear modification factor (RpPb) is presented for pT up to of 200 and 30 GeV/c, where the former was achieved by extending the π 0 measurement in pp collisions at √s = 8 TeV using the merged cluster technique. The values of RpPb are below unity for pT < 10 GeV/c, while they are consistent with unity for pT > 10 GeV/c, leaving essentially no room for final state energy loss. The new data provide strong constraints for nuclear parton distribution and fragmentation functions over a broad kinematic range and are compared to model predictions as well as previous results at √sNN = 5.02 TeV.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.