Polyharmonic maps of order k (briefly, k-harmonic maps) are a natural generalization of harmonic and biharmonic maps. These maps are defined as the critical points of suitable higher-order functionals which extend the classical energy functional for maps between Riemannian manifolds. The main aim of this paper is to investigate the so-called unique continuation principle. More precisely, assuming that the domain is connected, we shall prove the following extensions of results known in the harmonic and biharmonic cases: (i) if a k-harmonic map is harmonic on an open subset, then it is harmonic everywhere; (ii) if two k-harmonic maps agree on an open subset, then they agree everywhere; and (iii) if, for a k-harmonic map to the n-dimensional sphere, an open subset of the domain is mapped into the equator, then all the domain is mapped into the equator.

Unique continuation properties for polyharmonic maps between Riemannian manifolds

Montaldo, S;Ratto, A
2023-01-01

Abstract

Polyharmonic maps of order k (briefly, k-harmonic maps) are a natural generalization of harmonic and biharmonic maps. These maps are defined as the critical points of suitable higher-order functionals which extend the classical energy functional for maps between Riemannian manifolds. The main aim of this paper is to investigate the so-called unique continuation principle. More precisely, assuming that the domain is connected, we shall prove the following extensions of results known in the harmonic and biharmonic cases: (i) if a k-harmonic map is harmonic on an open subset, then it is harmonic everywhere; (ii) if two k-harmonic maps agree on an open subset, then they agree everywhere; and (iii) if, for a k-harmonic map to the n-dimensional sphere, an open subset of the domain is mapped into the equator, then all the domain is mapped into the equator.
2023
Polyharmonic maps; Unique continuation principle; Higher-order elliptic operators
File in questo prodotto:
File Dimensione Formato  
CJM-unique-continuation.pdf

Solo gestori archivio

Descrizione: Main article
Tipologia: versione editoriale (VoR)
Dimensione 542.95 kB
Formato Adobe PDF
542.95 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/356160
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact