The paper describes the architecture and the simulated performances of a memory-based chip that emulates human cortical processing in early visual tasks, such as texture segregation. The featural elements present in an image are extracted by a convolution block and subsequently processed by the cortical chip, whose neurons, organized into three layers, gain relational descriptions (intelligent processing) through recurrent inhibitory/excitatory interactions between both inter- and intra-layer parallel pathways. The digital implementation of this architecture directly maps the set of equations determining the status of the cortical network to achieve an optimal exploitation of VLSI technology in neural computation. Neurons are mapped into a memory matrix whose elements are updated through a programmable computational unit that implements synaptic interconnections. By using 0.5 μm-CMOS technology, full cortical image processing can be attained on a single chip (20×20 mm2 die) at a rate higher than 70 frames/second, for images of 256×256 pixels.

A memory-based recurrent neural architecture for chips emulating cortical visual processing

RAFFO, LUIGI;
1994-01-01

Abstract

The paper describes the architecture and the simulated performances of a memory-based chip that emulates human cortical processing in early visual tasks, such as texture segregation. The featural elements present in an image are extracted by a convolution block and subsequently processed by the cortical chip, whose neurons, organized into three layers, gain relational descriptions (intelligent processing) through recurrent inhibitory/excitatory interactions between both inter- and intra-layer parallel pathways. The digital implementation of this architecture directly maps the set of equations determining the status of the cortical network to achieve an optimal exploitation of VLSI technology in neural computation. Neurons are mapped into a memory matrix whose elements are updated through a programmable computational unit that implements synaptic interconnections. By using 0.5 μm-CMOS technology, full cortical image processing can be attained on a single chip (20×20 mm2 die) at a rate higher than 70 frames/second, for images of 256×256 pixels.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/3564
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact