Long time ago, Yang [Phys. Rev. 72, 874 (1947)] proposed a model of noncommutative spacetime that generalized the Snyder model to a curved background. In this paper, we review his proposal and the generalizations that have been suggested during the years. In particular, we discuss the most general algebras that contain as subalgebras both de Sitter and Snyder algebras, preserving Lorentz invariance, and are generated by a two-parameter deformation of the canonical Heisenberg algebra. We also define their realizations on quantum phase space, giving explicit examples, both exact and in terms of a perturbative expansion in deformation parameters.

Noncommutative Yang model and its generalizations

S. Mignemi
2023-01-01

Abstract

Long time ago, Yang [Phys. Rev. 72, 874 (1947)] proposed a model of noncommutative spacetime that generalized the Snyder model to a curved background. In this paper, we review his proposal and the generalizations that have been suggested during the years. In particular, we discuss the most general algebras that contain as subalgebras both de Sitter and Snyder algebras, preserving Lorentz invariance, and are generated by a two-parameter deformation of the canonical Heisenberg algebra. We also define their realizations on quantum phase space, giving explicit examples, both exact and in terms of a perturbative expansion in deformation parameters.
File in questo prodotto:
File Dimensione Formato  
JMP22-AR-01874-1.pdf

accesso aperto

Tipologia: versione post-print (AAM)
Dimensione 194.15 kB
Formato Adobe PDF
194.15 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/357698
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact