The location and the conformational changes of proteins/enzymes immobilized within Metal Organic Frameworks (MOFs) are still poorly investigated and understood. Bovine serum albumin (BSA), used as a model protein, was immobilized within two different zeolitic imidazolate frameworks (ZIF-zni and ZIF-8). Pristine ZIFs and BSA@ZIFs were characterized by X-ray diffraction, small-angle X-ray scattering, scanning electron microscopy, confocal laser scanning microscopy, thermogravimetric analysis, micro-FTIR and confocal Raman spectroscopy to characterize MOFs structure and the protein location in the materials. Moreover, the secondary structure and conformation changes of BSA after immobilization on both ZIFs were studied with FTIR. BSA is located both in the inner and on the outer surface of MOFs, forming domains that span from the micro- to the nanoscale. BSA crystallinity (β-sheets + α-helices) increases up to 25 % and 40 % due to immobilization within ZIF-zni and ZIF-8, respectively, with a consequent reduction of β-turns.

Conformational changes and location of BSA upon immobilization on zeolitic imidazolate frameworks

Tocco, Davide;Salis, Andrea
;
2023-01-01

Abstract

The location and the conformational changes of proteins/enzymes immobilized within Metal Organic Frameworks (MOFs) are still poorly investigated and understood. Bovine serum albumin (BSA), used as a model protein, was immobilized within two different zeolitic imidazolate frameworks (ZIF-zni and ZIF-8). Pristine ZIFs and BSA@ZIFs were characterized by X-ray diffraction, small-angle X-ray scattering, scanning electron microscopy, confocal laser scanning microscopy, thermogravimetric analysis, micro-FTIR and confocal Raman spectroscopy to characterize MOFs structure and the protein location in the materials. Moreover, the secondary structure and conformation changes of BSA after immobilization on both ZIFs were studied with FTIR. BSA is located both in the inner and on the outer surface of MOFs, forming domains that span from the micro- to the nanoscale. BSA crystallinity (β-sheets + α-helices) increases up to 25 % and 40 % due to immobilization within ZIF-zni and ZIF-8, respectively, with a consequent reduction of β-turns.
2023
BSA; Biomimetic mineralization; Immobilization; Protein location and conformation; Zeolitic imidazolate Frameworks (ZIFs)
File in questo prodotto:
File Dimensione Formato  
2023 1-s2.0-S0021979723004721-main.pdf

Solo gestori archivio

Tipologia: versione editoriale (VoR)
Dimensione 2.96 MB
Formato Adobe PDF
2.96 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Tocco et al pre-print.pdf

accesso aperto

Tipologia: versione pre-print
Dimensione 1.27 MB
Formato Adobe PDF
1.27 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/357738
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact