The present study aimed to obtain an efficient liquid nitrogen fertilizer from the by-product of anaerobic digestion for its subsequent use in the production of cyanobacteria (Spirulina). A simple recovery technology was tested based on the stripping and acid absorption, modifying temperature (50 and 70 degrees C) and pH (10 and 12), of the ammonia nitrogen contained in the digestate produced in a large-scale plant treating livestock manure and grass silage. The results demonstrated how, at a relatively low temperature (50 degrees C), using sulfuric and citric acid solution, it is possible to recover nitrogen from a digestate in the form of ammonium sulfate and ammonium citrate with yields of 70% and 72.1% respectively. By carrying out Spirulina growth tests, promising results were obtained under semicontinuous production, with a maximum dry biomass daily productivity of 0.344 g L-1 day(-1) with ammonium sulfate and 0.246 gDW L-1 day(-1) with ammonium citrate. The results showed that nitrogen can be efficiently recovered on site by using the organic acid, digestate and waste heat from anaerobic digestion for Spirulina biomass production.
Efficient Nitrogen Recovery from Agro-Energy Effluents for Cyanobacteria Cultivation (Spirulina)
Attene, L;Carucci, A;De Gioannis, G;Asunis, F;Ledda, C
2023-01-01
Abstract
The present study aimed to obtain an efficient liquid nitrogen fertilizer from the by-product of anaerobic digestion for its subsequent use in the production of cyanobacteria (Spirulina). A simple recovery technology was tested based on the stripping and acid absorption, modifying temperature (50 and 70 degrees C) and pH (10 and 12), of the ammonia nitrogen contained in the digestate produced in a large-scale plant treating livestock manure and grass silage. The results demonstrated how, at a relatively low temperature (50 degrees C), using sulfuric and citric acid solution, it is possible to recover nitrogen from a digestate in the form of ammonium sulfate and ammonium citrate with yields of 70% and 72.1% respectively. By carrying out Spirulina growth tests, promising results were obtained under semicontinuous production, with a maximum dry biomass daily productivity of 0.344 g L-1 day(-1) with ammonium sulfate and 0.246 gDW L-1 day(-1) with ammonium citrate. The results showed that nitrogen can be efficiently recovered on site by using the organic acid, digestate and waste heat from anaerobic digestion for Spirulina biomass production.File | Dimensione | Formato | |
---|---|---|---|
2023 Attene et al Efficient Nitrogen Spirulina Sustainability.pdf
accesso aperto
Tipologia:
versione editoriale (VoR)
Dimensione
2.21 MB
Formato
Adobe PDF
|
2.21 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.