Prokineticin 1 (PROK1) is a pleiotropic factor secreted by endocrine glands; however, its role has not been studied in the corpus luteum (CL) during pregnancy in any species. The present study aimed to investigate the contribution of PROK1 in regulating processes related to porcine CL function and regression: steroidogenesis, luteal cell apoptosis and viability, and angiogenesis. The luteal expression of PROK1 was greater on Days 12 and 14 of pregnancy compared to Day 9. PROK1 protein expression during pregnancy increased gradually and peaked on Day 14, when it was also significantly higher than that on Day 14 of the estrous cycle. Prokineticin receptor 1 (PROKR1) mRNA abundance increased on Days 12 and 14 of pregnancy, whereas PROKR2 elevated on Day 14 of the estrous cycle. PROK1, acting via PROKR1, stimulated the expression of genes involved in progesterone synthesis, as well as progesterone secretion by luteal tissue. PROK1-PROKR1 signaling reduced apoptosis and increased the viability of luteal cells. PROK1 acting through PROKR1 stimulated angiogenesis by increasing capillary-like structure formation by luteal endothelial cells and elevating angiogenin gene expression and VEGFA secretion by luteal tissue. Our results indicate that PROK1 regulates processes vital for maintaining luteal function during early pregnancy and the mid-luteal phase.
Prokineticin 1 is a novel factor regulating porcine corpus luteum function
Balboni, Gianfranco;
2023-01-01
Abstract
Prokineticin 1 (PROK1) is a pleiotropic factor secreted by endocrine glands; however, its role has not been studied in the corpus luteum (CL) during pregnancy in any species. The present study aimed to investigate the contribution of PROK1 in regulating processes related to porcine CL function and regression: steroidogenesis, luteal cell apoptosis and viability, and angiogenesis. The luteal expression of PROK1 was greater on Days 12 and 14 of pregnancy compared to Day 9. PROK1 protein expression during pregnancy increased gradually and peaked on Day 14, when it was also significantly higher than that on Day 14 of the estrous cycle. Prokineticin receptor 1 (PROKR1) mRNA abundance increased on Days 12 and 14 of pregnancy, whereas PROKR2 elevated on Day 14 of the estrous cycle. PROK1, acting via PROKR1, stimulated the expression of genes involved in progesterone synthesis, as well as progesterone secretion by luteal tissue. PROK1-PROKR1 signaling reduced apoptosis and increased the viability of luteal cells. PROK1 acting through PROKR1 stimulated angiogenesis by increasing capillary-like structure formation by luteal endothelial cells and elevating angiogenin gene expression and VEGFA secretion by luteal tissue. Our results indicate that PROK1 regulates processes vital for maintaining luteal function during early pregnancy and the mid-luteal phase.File | Dimensione | Formato | |
---|---|---|---|
Scientific Reports 2023.pdf
accesso aperto
Tipologia:
versione editoriale (VoR)
Dimensione
4.4 MB
Formato
Adobe PDF
|
4.4 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.