Fokker-Planck (FP) partial differential equation (PDE) theory is applied to characterize the stochastic dynamics of a class of open-loop (OL) 2-state nonlinear exothermic continuous reactors with: (i) zero and time-varying mean noise disturbances, and (ii) linear proportional-integral (PI) temperature control. The characterization includes: (i) the stochastic on deterministic dynamics dependency, (ii) gain condition for robust probability density function (PDF) stability over deterministic-diffusion time biscale with stationary monomodality at prescribed most probable (MP) state, (iii) evolutions of along nearly deterministic time scale of MP state and control and their variabilities, (iv) attainment of random motion in-probability (IP) stability over deterministic-diffusion time biscale, and (v) identification of the compromise between MP state regulation speed, robustness, and control effort. The methodological developments and findings are illustrated with three indicative examples with OL complex (bimodal and vulcanoid) stationary state PDFs, including analytic assessment as well as state PDF and random motion numerical simulation.

On the closed-loop stochastic dynamics of two-state nonlinear exothermic CSTRs with PI temperature control

Baratti R.
2023-01-01

Abstract

Fokker-Planck (FP) partial differential equation (PDE) theory is applied to characterize the stochastic dynamics of a class of open-loop (OL) 2-state nonlinear exothermic continuous reactors with: (i) zero and time-varying mean noise disturbances, and (ii) linear proportional-integral (PI) temperature control. The characterization includes: (i) the stochastic on deterministic dynamics dependency, (ii) gain condition for robust probability density function (PDF) stability over deterministic-diffusion time biscale with stationary monomodality at prescribed most probable (MP) state, (iii) evolutions of along nearly deterministic time scale of MP state and control and their variabilities, (iv) attainment of random motion in-probability (IP) stability over deterministic-diffusion time biscale, and (v) identification of the compromise between MP state regulation speed, robustness, and control effort. The methodological developments and findings are illustrated with three indicative examples with OL complex (bimodal and vulcanoid) stationary state PDFs, including analytic assessment as well as state PDF and random motion numerical simulation.
2023
Brownian state motion dynamics; Close-loop stochastic reactor dynamics; Fokker plank equation; In probability stability; PI control; Robust state PDF stability; Statistical process control
File in questo prodotto:
File Dimensione Formato  
CACEv174a108246.pdf

Solo gestori archivio

Descrizione: Article
Tipologia: versione editoriale (VoR)
Dimensione 3.37 MB
Formato Adobe PDF
3.37 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
CACE_manuscript.pdf

accesso aperto

Tipologia: versione pre-print
Dimensione 1.69 MB
Formato Adobe PDF
1.69 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/359579
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact